Final Review

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3317/index.html

Part of slide credits: CMU Al & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS3317/index.html

Search
Problems

Search Problems

* A search problem consists of:

e O
* For each state, a set
Actions(s) of successors/actions ! {N, E}
lINII 1 O u

lIE” 1 O

* A successor function
e A transition model T(s,a)
* A step cost(reward) function c(s,a,s’)

e A start state and a goal test

* A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

State Space Graphs

e State space graph: A mathematical
representation of a search problem
* Nodes are (abstracted) world configurations
* Arcs represent successors (action results)

* The goal test is a set of goal nodes (maybe only one) /

* |In a state space graph, each state occurs only !
once!

* We can rarely build this full graph in memory l
(it’s too big), but it’s a useful idea

Search Trees

! This is now / start

N, 10— “E”, 1.0

u u Possible futures

* A search tree:
* A “whatif” tree of plans and their outcomes
The start state is the root node
Children correspond to successors
Nodes show states, but correspond to PLANS that achieve those states
For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

—
e

=~ T

b e h r

I —_ S 1

a h r p q f
S I - L S
p qg f 3 ¢ G
[] /\
q cC G a

Tree Search

Searching with a Search Tree

Arad

CArad > CFagaras> COradea @mniou vics

* Search:
e Expand out potential plans (tree nodes)
* Maintain a fringe of partial plans under consideration
* Try to expand as few tree nodes as possible

ends of
paths on
frontier

General Tree Search = o

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

* Important ideas:
* Fringe
* Expansion
* Exploration strategy

* Main question: which fringe nodes to explore?

General Tree Search 2

TREE_SEARCH(problem) a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
for each resulting child from node
add child to the frontier

Depth-First (Tree) Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

11

Breadth-First (Tree) Search

Strategy: expand a @>/' @ O @
shallowest node first
Im jon: Fri @ G
plementation: Fringe 0
is a FIFO queue e M
Oy (D
4 O,
@ i
Search
| ® © ® ©
Tiers | | N N |
@ a h r p g f
N | | RN
N p g f q € G
| PN |
q G a

Search Algorithm Properties

* Complete: Guaranteed to find a solution if one exists?

* Optimal: Guaranteed to find the least cost path?

: : ;
* Time complexity? 1 node
* Space complexity? b nodes
b2 nodes

* Cartoon of search tree: m tiers <

* bis the branching factor

* mis the maximum depth

* solutions at various depths L b™ nodes

e Number of nodes in entire tree?
e 1+b+b?+..+b™=0(b™)

13

Depth-First Search (DFS) Properties

What nodes DFS expand?

* Some left prefix of the tree.
e Could process the whole tree!
* If mis finite, takes time O(b™)

m tiers <<

How much space does the fringe take?
* Only has siblings on path to root, so O(bm)

-

Is it complete?

* m could be infinite, so only if we prevent cycles
(more later)

s it optimal?
* No, it finds the “leftmost” solution, regardless of
depth or cost

1 node

b nodes

b2 nodes

b™ nodes

14

Breadth-First Search (BFS) Properties

* What nodes does BFS expand? - o
* Processes all nodes above shallowest solution b) node
» Let depth of shallowest solution be s stiers < noaes
« Search takes time O(bs) / b* nodes
* How much space does the fringe take? ~ / O A b* nodes
* Has roughly the last tier, so O(b®) o
b™ nodes

* |s it complete?)
* s must be finite if a solution exists

* |s it optimal?
e Only if costs are all 1 (more on costs later)

15

[terative Deepening

* |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
* Run a DFS with depth limit 1. If no solution...
* Run a DFS with depth limit 2. If no solution...
* Run a DFS with depth limit 3.

* Isn’t that wastefully redundant?

* Generally most work happens in the lowest level
searched, so not so bad!

Finding a Least-Cost Path

* BFS finds the shortest path in terms of number of actions, but not the
least-cost path

e A similar algorithm would find the least-cost path

Uniform Cost Search

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost< @6 o W13E7
N |

contours

Uniform Cost Search 2

UNIFORM-COST-SEARCH(problem) a solution, or failure
initialize the frontier as a priority queue using node’s path_cost as the priority
add initial state of problem to frontier with path_cost =0

the frontier is empty

failure
choose a node (with minimal path_cost) and remove it from the frontier
the node contains a goal state
the corresponding solution
for each resulting child from node
add child to the frontier with path_cost = path_cost(node) + cost(node, child)

19

Uniform Cost Search (UCS) Properties

 What nodes does UCS expand?
* Processes all nodes with cost less than cheapest solution!

* |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/¢

* Takes time O(bC*%) (exponential in effective depth) ~ C'7¢ “tiers”

* How much space does the fringe take?
* Has roughly the last tier, so O(b€™%)

Is it complete?

* Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

Is it optimal?
* Yes! (Proof next via A*)

The One Queue

e All these search algorithms are the |
same except for fringe strategies L@_O\LQD\LEAQL-‘L\AL&‘AVM . L@j
* Conceptually, all fringes are priority |

qgueues (i.e. collections of nodes with
attached priorities)

* Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

e Can even code one implementation that
takes a variable queuing object

21

Informed Search

Search Heuristics

* A heuristic is:
* A function that estimates how close a state is to a goal
* Designed for a particular search problem
e Pathing?
* Examples: Manhattan distance, Euclidean distance for pathing

Heuristi - Tron ___J

——

Heuristi - Tron

Greedy Search

* Expand the node that seems closest to the goal

[} Mehadia

75
~ Arad

Dobreta [J

Sibiu
| 329
366 380 193
253 0

* |s it optimal?
* No. Resulting path to Bucharest is not the shortest!
* Why?
* Heuristics might be wrong 24

A* Search: Combining UCS and Greedy

 Uniform-cost orders by path cost, or backward cost g(n)
« Greedy orders by goal proximity, or forward cost h(n)

« A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg éSrenager

When should A* terminate?

e Should we stop when V\Ze enqueue a goal?
=2

2 2

@th h=0 @
2 e 3

h=1
* No: only stop when we dequeue a goal

gh+

-S- 0

~J

&

S->A

N
N

4

=>->B 213

S->B->G505

S->A->G404

26

A* Search

A-STAR-SEARCH(problem) a solution, or failure
initialize the frontier as a priority queue using f(n)=g(n)+h(n) as the priority
add initial state of problem to frontier with priority f(S)=0+h(S)

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
for each resulting child from node
add child to the frontier with f(n)=g(n)+h(n)

(a) The initial state P And >

366=0+366

(b) After expanding Arad
P Sibiu Cimisoard Cerind D
3931404253 44721184329 449=75+374

(¢) After expanding Sibiu

(] Vaslui

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea
] Hirsova

86

[] Mehadia Urziceni

imisoar

44T7=118+329 449=75+374 75

Dobreta []

L Eforie
[] Giurgiu
526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras
Arad 366 Mehadia 241
Bucharest 0 Neamt 234
p— Craiova 160 Oradea 380
olo2m0e366 Drobeta 242 Pitesti 100

449=75+374

; Eforie 161 Rimnicu Vilcea 193

591=338+253 450=450+0 526=366+160 417=317+100 553=3(0)+253 Fagaras 1 76 Sibiu 253

(f) After expanding Pitesti Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80

Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

449=75+374

28

418=418+0 615=455+160 607=414+193

s A* Optimal?

h=6

gh+

C

o7 7
o) J 77

S->A 167

S->G 505

* What went wrong?
* Actual bad goal cost < estimated good goal cost
 We need estimates to be less than actual costs!

29

Admissible Heuristics

* A heuristic h is admissible (optimistic) if
0 < h(n) <h*(n)
where h™(n) is the true cost to a nearest goal

- - 0.0

* Coming up with admissible heuristics is most of what’s involved in
using A* in practice

* Examples:

Optimality of A* Tree Search

* Assume:
* Ais an optimal goal node
* Bis a suboptimal goal node
* his admissible

* Claim:
* A will exit the fringe before B

Optimality of A* Tree Search: Blocking

* Proof:
* Imagine B is on the fringe

* Some ancestor n of A is on the fringe,
too (maybe Al)

e Claim: n will be expanded before B
1. f(n)is less or equal to f(A)

f(n) = g(n) 4+ h(n) Definition of f-cost
f(n) <g(A) Admissibility of h
g(A) = f(A) h =0 at a goal

Optimality of A* Tree Search: Blocking 2

* Proof:
* Imagine B is on the fringe

* Some ancestor n of A is on the fringe,
too (maybe Al)
e Claim: n will be expanded before B
1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)

g(A) < g(B) B is suboptimal
f(A) < f(B) h =0 at a goal

Optimality of A* Tree Search: Blocking 3

* Proof:
* Imagine B is on the fringe
* Some ancestor n of A is on the fringe,
too (maybe Al)

e Claim: n will be expanded before B
1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)
3. nexpands before B

* All ancestors of A expand before B
* A expands before B f(n) < f(A) < f(B)

* A* search is optimal

34

Comparison

==

SCORE: 0

SCORE: (SCORE: 0

Greedy Uniform Cost A*

35

Creating Heuristics

YOu GOT

HEURISTILC
UFPGRADE!

* Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

e Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

* I[nadmissible heuristics are often useful too

36

Example: 8 Puzzle

1 2 |4 3|7
5 % TN 2

83 1 Sl ®

Start State

* What are the states? <=

* How many states?

* What are the actions?

* How many successors from the start state?
* What should the costs be?

!

4

P2
>
S,

3
6|7

Goal State

Admissible
heuristics?

37

Example: 8 Puzzle - 2

e Heuristic: Number of tiles misplaced
* Why is it admissible?

* h(start) = &

* This is a relaxed-problem heuristic

Start State Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

38
Statistics from Andrew Moore

Example: 8 Puzzle - 3

 What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring
other tiles?

6

Start State Goal State

2
345
8|

 Total Manhattan distance

Average nodes expanded
when the optimal path has...

* Why is it admissible? .4 steps | ...8 steps |...12 steps

TILES 13 39 227

e h(start)=3+1+2+..=18 MANHATTAN 12 25 /3

Example: 8 Puzzle - 4

* How about using the actual cost as a heuristic?
* Would it be admissible?

* Would we save on nodes expanded? g; tl
() NOPE. GoAL!

* What’s wrong with it?

e With A*: a trade-off between quality of estimate and work per node

* As heuristics get closer to the true cost, you will expand fewer nodes but
usually do more work per node to compute the heuristic itself

Constraint Satisfaction Problems

Constraint Satisfaction Problems

N variables
domain D

constraints

states goal test successor function

partial assignment complete; satisfies constraints assign an unassigned variable
42

What is Search For?

e Assumptions about the world: a single agent, deterministic actions, fully

observed state, discrete state space

* Planning: sequences of actions
* The path to the goal is the important thing
e Paths have various costs, depths
e Heuristics give problem-specific guidance

* |dentification: assignments to variables
 The goal itself is important, not the path
e All paths at the same depth (for some formulations)
e CSPs are specialized for identification problems

N , “
7
.

43

Constraint Satisfaction Problems

e Standard search problems:
e State is a “black box”: arbitrary data structure
e Goal test can be any function over states
* Successor function can also be anything

* Constraint satisfaction problems (CSPs):
* A special subset of search problems

 State is defined by variables X; with values
from a domain D (sometimes D depends on i)

* Goal test is a set of constraints specifying
allowable combinations of values for subsets
of variables

* Allows useful general-purpose algorithms
with more power than standard search
algorithms 44

Constraint Graphs

* Binary CSP: each constraint relates (at most)
two variables

* Binary constraint graph: nodes are variables,
arcs show constraints @

e General-purpose CSP algorithms use the ww

graph structure to speed up search. E.g.,
Tasmania is an independent subproblem! °

Standard Search Formulation

e Standard search formulation of CSPs

* States defined by the values assigned so
far (partial assignments)
* |nitial state: the empty assignment, {}

 Successor function: assign a value to an
|unassigned variable| —Can be any unassigned variable

e Goal test: the current assignment is
complete and satisfies all constraints

* We'll start with the straightforward,
naive approach, then improve it

46

Search Methods: DFS

* At each node, assign a value from the
domain to the variable

——
\\
* Check feasibility (constraints) when m

the assighment is complete

* What problems does the naive search
have?

[Demo: coloring -- dfs]

Backtracking Search

Backtracking search is the basic uninformed algorithm for
solving CSPs

Backtracking search = DFS + two improvements

Idea 1: One variable at a time

* Variable assignments are commutative, so fix ordering -> better
branching factor!

* |.e., [WA =red then NT = green] same as [NT = green then WA = red]
* Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
* |.e. consider only values which do not conflict previous assignments
* Might have to do some computation to check the constraints
* “Incremental goal test”

Can solve N-queens for N = 25

Example

¢ & &

BACKTRACKING_SEARCH(csp) a solution, or failure
RECURSIVE_BACKTRACKING({}, csp)

RECURSIVE_BACKTRACKING(assignment, csp) a solution, or failure
assignment is complete
assignment
var «— SELECT_UNASSIGNED VARIABLE(VARIABLES[csp], assignment, csp)
each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
value is consistent with assignment given CONSTRAINTS[csp]
add {var=value} to assignment
result «<— RECURSIVE_BACKTRACKING(assignment, csp)
result # failure
result
remove {var=value} from assignment

failure

function BACKTRACKING _SEARCH(csp) returns a solution, or failure
return RECURSIVE_BACKTRACKIN csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure

T assignment is complete then No need to check consistency for a
return assignment complete assignment

var «— SELECT_UNASSIGNED VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
T value is consistent with assignment given CONSTRAINTS[csp] then

What are choice
points?

add {var=value} to assignment Checks consistency at each assignment

result «<— RECURSIVE_BACKTRACKING(assignment, csp)
't result # failure then

return result

remove {var=value} from assignment Backtracking = DFS + variable-ordering +

: fail-on-violation
return failure

Improving Backtracking

* General-purpose ideas give huge gains in speed
* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next?
* In what order should its values be tried?

 Structure: Can we exploit the problem structure?

52

Filtering: Forward Checking

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment failure is detected if some variables have no values remaining

WA NT| Q
SA NSW.
Y
WA NT Q NSW VvV SA

[Demo: coloring -- forward checking]

Filtering: Forward Checking 2

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment

WA NT Q NSW \' SA

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints [Demo: coloring -- forward cHecking]

Filtering: Forward Checking 3

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment

E:- S U
(9)

&1 %

) wa NT Q NSW v SA
T I I I iIreir
1 M I 1Irm i

[Demo: coloring -- forward checking]

Filtering: Forward Checking 4

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment

ol ‘\ | ‘l | ‘
@‘ _L’: I: !: _Ll;‘ FAIL — variable with

0 WA NT Q NSW Vv sa ho possible values
OB T I I IrIrIrmr
(] "EErE[ErE[ErE] .
[— 1 11]

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

* Forward checking propagates information from assigned to unassigned

variables, but doesn't provide early detection for all failures:

NT
SA

* NT and SA cannot both be blue!
 Why didn’t we detect this yet?

WA

NT Q NSW \'

I I 1T I I I
| TEErEErEEEE] S
I | O

1 T ICE 1
—/

e Constraint propagation: reason from constraint to constraint

SA
—
]

57

Consistency of A Single Arc

* An arc X — Y is consistent iff for every x in the tail there is some y in the
head which could be assigned without violating a constraint

L

S—
@—‘@"‘a@

@

Forward checking?
A special case
Enforcing consistency of arcs pointing to each new assignment

NT WA NT Q NSW v SA
Q

3 B _TEErEErEEr e .

NSW
\Y

Delete from the tail!

58

Arc Consistency of an Entire CSP

* Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW vV SA
A Tw I | 1 [m [H] -]

v 1\ VV‘

Important: If X loses a value, neighbors of X need to be rechecked!

Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment
What's the downside of enforcing arc consistency?

Remember: Delete
from the tail!

59

Arc Consistency of Entire CSP 2

* A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-

consistency, repeating the cycle until no domains change for a whole
cycle

* AC-3 (Arc Consistency Algorithm #3):

* A more efficient algorithm ignoring constraints that have not been modified
since they were last analyzed

NT
Q
SA
NSW

60

AC-3(csp) the CSP, possibly with reduced domains
initialize a queue of all the arcs in csp
gueue is not empty
(X;, X;j) «— REMOVE_FIRST(queue)
REMOVE_INCONSISTENT_VALUES(X;, X;)
for each X}, in NEIGHBORSI[X;] do
add (X, X;) to queue

REMOVE_INCONSISTENT_VALUES(X;, X;) true iff succeeds
removed «— false
each x in DOMAIN[X;]
no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint X; < X;

delete x from DOMAIN[X;]; removed «— true
removed

AC-3(csp) the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp

gueue is not empty
(X;, X;j) «— REMOVE_FIRST(queue)
| REMOVE_INCONSISTENT_VALUES(X;, X;) Constraint Propagation!
for each X in NEIGHBORS[X;] do
add[(Xk,Xi)]to queue

REMOVE_INCONSISTENT_VALUES(X;, X;) true iff succeeds
removed «— false
each x in DOMAIN[X;]
no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint X; < X;
delete x from DOMAIN[X;]; removed «— true
removed

function AC-3(csp) returns the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp e An arcis added after a removal of
while queue is not empty do value at a node
(X;, X;) < REMOVE_FIRST(queue) * nnode in total, each has < d values
|if REMOVE_INCONSISTENT_VALUES(X;, X;) then | * Total times of removal: O (nd)
for each X;, in NEIGHBORS[X;] do e After aremoval, < n arcs added
[add (X, X;) to queue] » Total times of adding arcs: 0(n“d)

function REMOVE_INCONSISTENT_VALUES(X;, Xj) returns true iff succeeds
removed « false e Check arc consistency per arc: 0(d?)

[for each x in DOMAIN[X;] do] Complexity: 0(n?d?)
if no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint X; <> X; then
delete x from DOMAIN[X;]; removed «— true * Can be improved to O(n*d?)

return removed ... but detecting all possible future
problems is NP-hard — why?

Example of AC-3

Queue:
SA->WA
NT->WA

Remember: Delete from the tail!

64
64

Example of AC-3 2

Queue:

NT->WA
WA->SA
NT->SA
Q->SA
@ B NSW->SA
V->SA

Remember: Delete from the tail!

65

Example of AC-3 3

66

Example of AC-34

67

Example of AC-3 5

Limitations of Arc Consistency

* After enforcing arc consistency: O %
* Can have one solution left %
Ca—_mm

e Can have multiple solutions left
e Can have no solutions left (and not know it)

* Arc consistency still runs inside a
backtracking search!

* And will be called many times

[Demo: coloring -- forward checking]
69
[Demo: coloring -- arc consistency]

BACKTRACKING_SEARCH(csp) a solution, or failure
RECURSIVE_BACKTRACKING({}, csp)

RECURSIVE_BACKTRACKING(assignment, csp) a solution, or failure
assignment is complete
assignment
var «— SELECT_UNASSIGNED VARIABLE(VARIABLES[csp], assignment, csp)
each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
value is consistent with assignment given CONSTRAINTS[csp]
add {var=value} to assignment
AC-3(csp)
result «— RECURSIVE_BACKTRACKING(assignment, esp)
result # failure,
result
remove {var=value} from assignment

failure

Improving Backtracking

* General-purpose ideas give huge gains in speed
* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next?
* In what order should its values be tried?

 Structure: Can we exploit the problem structure?

71

Ordering: Minimum Remaining Values

 Variable Ordering: Minimum remaining values (MRV):
* Choose the variable with the fewest legal left values in its domain

~D

* Why min rather than max?
e Also called “most constrained variable”
» “Fail-fast” ordering

Ordering: Least Constraining Value

* Value Ordering: Least Constraining Value
* Given a choice of variable, choose the least constraining

value
 |.e., the one that rules out the fewest values in the
remaining variables

* Note that it may take some computation to determine
this! (E.g., rerunning filtering)

==
==

[

Fr_‘

* Why least rather than most?

* Combining these ordering ideas makes
1000 queens feasible

Improving Backtracking

* General-purpose ideas give huge gains in speed
* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next?
* In what order should its values be tried?

 Structure: Can we exploit the problem structure?

74

Problem Structure

* For general CSPs, worst-case complexity with backtracking
algorithm is O(d")

* When the problem has special structure, we can often solve
the problem more efficiently

e Special Structure 1: Independent subproblems
* Example: Tasmania and mainland do not interact
* Connected components of constraint graph

e Suppose a graph of n variables can be broken into
subproblems, each of only c¢ variables:

* Worst-case complexity is O((n/c)(d)), linear in n
e Eg.,n=80,d=2,c=20

280 =4 billion years at 10 million nodes/sec

* (4)(2%°) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

* Theorem: if the constraint graph has no loops, the CSP can be solved in O(nd?)
time
* Compare to general CSPs, where worst-case time is O(d")
e How?

* This property also applies to probabilistic reasoning (later): an example of the
relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs 2

e Algorithm for tree-structured CSPs:
* Order: Choose a root variable, order variables so that parents precede children

§>

=g,

- 77

Tree-Structured CSPs 3

e Algorithm for tree-structured CSPs:
* Order: Choose a root variable, order variables so that parents precede children

+ Algorithm for tree-structured CSPs:
+ Order: Choose a root variable, order variables so that parents precede children
* Remove backward: F n:2, apply RemovMent(Parent(Xi),Xi) . .
[] [] [] []
)) HE B HE B B

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X;)

78

Tree-Structured CSPs 4

e Algorithm for tree-structured CSPs:
* Order: Choose a root variable, order variables so that parents precede children

> STV

[N
* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X,)
* Assign forward: For i = 1:n, assign X, consistently with Parent(X;)

Remove backward O (nd?) : 0(d?) per arc and 0(n) arcs
* Runtime: 0(nd?) (why?) Assignforward O(nd): 0(d) per node and O(n) nodes

* Can always find a solution when there is one (why?) 79

Tree-Structured CSPs 5

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X;)

e Claim 1: After backward pass, all root-to-leaf arcs are consistent
* Proof: During backward pass, every node except the root node was “visited” once

* a. Parent(X;) — X; was made consistent when X; was visited

* b. After that, Parent(X;) — X; kept consistent until the end of the backward pass

80

Tree-Structured CSPs 6

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X;)

e Claim 1: After backward pass, all root-to-leaf arcs are consistent
* Proof: During backward pass, every node except the root node was “visited” once

* a. Parent(X;) — X; was made consistent when X; was visited

* When X; was visited, we enforced arc consistency of Parent(X;) — X; by reducing the domain
of Parent(X;). By definition, for every value in the reduced domain of Parent(X;), there was
some x in the domain of X; which could be assigned without violating the constraint involving
Parent(X;) and X;

* b. After that, Parent(X;) — X; kept consistent until the end of the backward pass

Tree-Structured CSPs 7

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X;)

e Claim 1: After backward pass, all root-to-leaf arcs are consistent
* Proof: During backward pass, every node except the root node was “visited” once.
* a. Parent(X;) — X; was made consistent when X; was visited

* b. After that, Parent(X;) — X; kept consistent until the end of the backward pass

* Domain of X; would not have been reduced after X; is visited because X;’s children were

visited before X;. Domain of Parent(X;) could have been reduced further. Arc consistency
would still hold by definition.

82

Tree-Structured CSPs 8

* Assign forward: For i=1:n, assign X; consistently with Parent(X;)

* Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

* Proof: Follow the backtracking algorithm (on the reduced domains and with the same
ordering). Induction on position Suppose we have successfully reached node X;. In the
current step, the potential failure can only be caused by the constraint between X; and
Parent(X;), since all other variables that are in a same constraint of X; have not
assigned a value yet. Due to the arc consistency of Parent(X;) — X;, there exists a
value x in the domain of X; that does not violate the constraint. So we can successfully
assign value to X; and go to the next node. By induction, we can successfully assign a
value to a variable in each step of the algorithm. A solution is found in the end. ,

Local Search

Local Search

e Can be applied to identification problems (e.g., CSPs), as well as some
planning and optimization problems

* Typically use a complete-state formulation
* e.g., all variables assigned in a CSP (may not satisfy all the constraints)

* Different -
* An assignment is means that all variables are assigned a value
* An algorithm is means that it will output a solution if there exists

one

iterative Algorithms for CSPs

* To apply to CSPs:
* Take an assignment with unsatisfied constraints
* Operators reassign variable values
* No fringe! Live on the edge.

e Algorithm: While not solved,

* Variable selection: randomly select any
conflicted variable
* Value selection: min-conflicts heuristic
* Choose a value that violates the fewest constraints

* v.s., hill climb with h(x) = total number of violated
constraints (break tie randomly)

Example: 4-Queens

e States: 4 queens in 4 columns (4% = 256 states)
e Operators: move queen in column

* Goal test: no attacks

e Evaluation: h(n) = number of attacks

87

Performance of Min-Conflicts

* Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)!

* The same appears to be true for any randomly-generated CSP except
in @ narrow range of the ratio

R number of constraints
number of variables

CPU
time

|
cr|t|c_al 88
ratio

Local Search vs Tree Search

* Tree search keeps unexplored alternatives on the fringe (ensures
completeness)

* Local search: improve a single option until you can’t make it better
(no fringe!)

* New successor function: local changes

O

1999

e Generally much faster and more memory efficient (but incomplete
and suboptimal)

89

Example

* Local search may get stuck in a local optima

Hill Climbing

e Simple, general idea:
e Start wherever
* Repeat: move to the best neighboring state
* If no for current, quit

* What’s bad about this approach?
Complete? No!

Optimal? No!

* What's good about it? >

91

Hill Climbing Diagram
In identification problems, could be a function measuring how close you are to a
valid solution, e.g., —1X #conflicts in n-Queens/CSP

objectixe function nlobal maximum

What’s the difference between
shoulder and flat local maximum
shoulder (both are plateau)?

\ local maximum

"flat" local maximum

state space
curren .

state

Objective Function

Quiz ‘ [\

State Space
>

X A B CY D E Z

e Starting from X, where do you end up ?
e Starting from Y, where do you end up ?

e Starting from Z, where do you end up ?

93

Hill Climbing (Greedy Local Search)

function HILL-CLIMBING(problem) returns a state that is a local maximum

current «+— MAKE-NODE(problem.INITIAL-STATE)
loop do
neighbor «— a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current < netghbor

How to apply Hill Climbing to n-Queens? How is it different from Iterative Improvement?

Define a state as a board with n queens on it, one in each column
Define a successor (neighbor) of a state as one that is generated by moving a
single queen to another square in the same column

94

function HILL-CLIMBING(problem) returns a state that is a local maximum

current «+— MAKE-NODE(problem.INITIAL-STATE) What if there is 3 tie?

loop do
rnez'ghbor — a highest-valued successor of current| 1ypically break ties randomly
if neighbor. VALUE < current. VALUE then|return current.STATE|
current < neighbor

What if we do not stop here?

* |n 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
» Takes 4 steps on average when it succeeds, and 3 steps when it fails

 When allow for <100 consecutive sideway moves, solves 94% of problem instances
* Takes 21 steps on average when it succeeds, and 64 steps when it fails

95

Local Search: Summary

 Maintain a constant number of current nodes or states, and move to
“neighbors” or generate “offsprings” in each iteration
* Do not maintain a search tree or multiple paths
* Typically do not retain the path to the node

* Advantages
e Use little memory

e Can potentially solve large-scale problems or get a reasonable (suboptimal or
almost feasible) solution

Boolean Satistiability Problem

Boolean Constraint Propagation (BCP)

* Unit clause: A clause is unit under a partial assignment when that
assignment makes every literal in the clause unsatisfied but leaves a
single literal undecided

e Example: f = (-x1 V =-x2 V x3) A (-x3 V x4), guess x1 and x2 are true

Davis-Putnam-Logemann-Loveland (DPLL)
Algorithm

* A SAT solver: recursive backtracking + BCP

* DPLL:
* Run BCP on the formula
* If the formula evaluates to True, return True
* If the formula evaluates to False, return False
* |f the formula is still Undecided:
* Choose the next unassigned variable
e Return (DPLL with that variable True) | | (DPLL with that variable False)

* Demo

Shortcomings of DPLL

* DPLL:
* Run BCP on the formula
e If the formula evaluates to True, return True
* If the formula evaluates to False, return Fals
* |f the formula is still Undecided:

No learning: throws away all the
work performed to conclude that the
current partial assignment (PA) is
bad. Revisits bad PAs that lead to
conflict due to the same root cause

%Ve decisions: picks an arbitrary

variable to branch on. Fails to
consider the state of the search to

* Choose the next unassigned variable
e Return (DPLL with that variable True) | |

'\

Chronological backtracking: backtracks
one level, even if it can be deduced
that the current partial assignment
became doomed at a lower level

| make heuristically better decisions

(DPLL with that variable False)

100

Conflict Driven Clause Learning (CDCL)

* CDCL improves on all three aspects!

e CDCL(F):
e A&} Decision heuristics: choose the
 if BCP(F, A) = conflict then return false next literal to add to the current
e level & 0 partial assignment based on the
* while hasUnassignedVars(F) state of the search

e level & level +1

* A< AU {DECIDE(F, A) } Learning: F augmented with a
e while BCP(F, A) = conflict conflict clause that summarizes

e (b, c) & ANALYZECONFLICT() the root cause of the conflict

* F<& FU {c}

 if b <0 then return false

else BACKTRACK(F, A, b) Non-chronological backtracking:
level & b backtracks b levels, based on the
cause of the conflict

* return true

101

CDCL by example

* CDCL(F):
c A&}

mmm) . if BCP(F, A) = conflict then return false

e level &0

* while hasUnassignedVars(F)

* level & level +1

« A& AU {DECIDE(F A) }
e while BCP(F, A) = conflict
e (b, c) &< ANALYZECONFLICT()

* F< FU{c}

e if b <0 then return false
else BACKTRACK(F, A, b)

* return true

level & b

F=
& s
C2:
C3:
C4:
Cs.
Cé.

{ €1:€5,763,/C4;:C5, Chyus

X V X2 VX4
X)) VX2 VX3
X3 V X4

X4 V X5 V Xe¢
=X V X7

IXg V X7 V T1Xg

€9}

102

CDCL by example 2

* CDCL(F):
c A&}

 if BCP(F, A) = conflict then return false

e level &0

* while hasUnassignedVars(F)

* level & level +1

mmm) o« A& AU{DECIDE(F, A) }
e while BCP(F, A) = conflict
* (b, c) & ANALYZECONFLICT()

* F< FU{c}

e if b <0 then return false
else BACKTRACK(F, A, b)

* return true

level & b

F=
C.
C2.
C3:
C4:
Cs.
Cé .

{ ci; c2;63, €4; €5,C4;.5::5C9)
=X VX2V x4

=X VxXa VX3
X3 V X4

X4 V X5 V Xg
=X V X7

IXg V X7 V T1Xg

103

CDCL by example 3

* CDCL(F):
c A&}

 if BCP(F, A) = conflict then return false

e level &0

* while hasUnassignedVars(F)

* level & level +1

« A < AU{DECIDE(F, A) }
E=E) « while BCP(F, A) = conflict
« (b, c) < ANALYZECONFLICT()

* F< FU{c}

e if b <0 then return false
else BACKTRACK(F, A, b)

* return true

level & b

F=
Cl.
C2:
C3.
C4:
Cs.
Cs.

{ Cii/63:/C3; €4:165:/C8:.05:16o)
=X VX2 Vx4

=X VxXa VX3
X3 V X4

X4 V X5 V Xg
X5 V X7

IXg V X7 V T1Xg

104

CDCL by example 4

* CDCL(F):
c A&}

 if BCP(F, A) = conflict then return false

e level &0

* while hasUnassignedVars(F)

* level & level +1

mmm) o« A& AU{DECIDE(F, A) }
e while BCP(F, A) = conflict

F.

o { c|, C2,C3, C4, C5,C¢, ..., C9}
Ci:

C2:
C3:
C4:
Cs:
Ce:

=X V X2 V IX4
vV X2 VX3
X3 V X4

X4 V X5 V X¢
=IX5 V X7

X V X7 V TIXg

e (b, c) & ANALYZECONFLICT()

* F< FU{c}

e if b <0 then return false
else BACKTRACK(F, A, b)

* return true

level & b

105

CDCL by example 5

* CDCL(F):
c A&}

 if BCP(F, A) = conflict then return false

e level &0

* while hasUnassignedVars(F)

* level & level +1

mmm) o« A& AU{DECIDE(F, A) }
e while BCP(F, A) = conflict
* (b, c) & ANALYZECONFLICT()

* F< FU{c}

e if b <0 then return false
else BACKTRACK(F, A, b)

* return true

level & b

F=
Cl:
C2:
C3:
C4:
Cs.
Cé.

{ €i;62;:C3;:C4y €55:C6; ..-5:C9:}
=X VX2 V Xy

=X VX2 VX3
X3 V IX4

X4 V X5 V Xé
=Xs5 V X7

X V X7 V TIXg

106

CDCL by example 6

F={cicyc30C4¢Cs50Cs...,Co}
Ci: X1 VX2 V X4

° CDCL(F) C2: X V X2 V X3
c A< {} €3: X3 V X4
 if BCP(F, A) = conflict then return false C4: X4 VX5 V Xe
* level <0 Cs: ™5 VIS

» while hasUnassignedVars(F) Co: X V X7 V T1X8

e level & level + 1
e A& AU {DECIDE(F, A)}

* while BCP(F, A) = conflict @

e (b, c) ¢ ANALYZECONFLICT()
* F&FU({c}

e if b <0 then return false
else BACKTRACK(F, A, b) @

level < b € @

* return true 107

o

CDCL by example 7

F ={ €1;62;:C3; C4; €5,:C6; 1--5:C9}
Ci: X1 VX2V x4

° CDCL(F) C2: Nl V X2 V X3
* A&} C3: X3 V X4
* if BCP(F, A) = conflict then return false C4: X4 VX5 VX
* level <0 Cs: ™5 Vi

* while hasUnassignedVars(F) Ce: X V X7 V TIXg

e level & level + 1
e A& AU {DECIDE(F, A)}

e while BCP(F, A) = conflict @ Cs

. (b, c) & ANALYZECONFLICT() @
« FE€FU{c) =
e if b <0 then return false @
else BACKTRACK(F, A, b) 5 @
level & b

* return true 108

CDCL by example 8

* CDCL(F):
c A&}

 if BCP(F, A) = conflict then return false

e level &0

* while hasUnassignedVars(F)

* level & level +1

« A& AU {DECIDE(F A) }
e while BCP(F, A) = conflict
e (b, c) &< ANALYZECONFLICT()

* F< FU{c}

e if b <0 then return false
else BACKTRACK(F, A, b)

* return true

level & b

F=
Gl
C2:
C3:
C4:
Cs.
Co.

{ c1,c2,€3,€4,C5,C4, ..., Co }
=X V X2 V IX4

=X vV Xa VX3
X3 V TIX4

X4 V X5 V X¢
X5 V X7

X V X7 V TIXg

109

CDCL by example 9

* CDCL(F):
c A&}

 if BCP(F, A) = conflict then return false

e level &0

* while hasUnassignedVars(F)

* level & level +1

« A& AU {DECIDE(F A) }
e while BCP(F, A) = conflict
e (b, c) &< ANALYZECONFLICT()

* F< FU{c}

e if b <0 then return false
else BACKTRACK(F, A, b)

* return true

level & b

F=
o B
C2.
C3:
C4:
Cs.
Co.

{ ci1,¢2,¢3,C4,C5,Cé, ..., C9 }
=X V X2 V X4

=X VX VX3

X3 V TIX4

X4 V X5 V X¢
=1Xs5 V X7

Xg V X7 V TIXg

110

CDCL by example 10

* CDCL(F):
c A&}

 if BCP(F, A) = conflict then return false

e level &0

* while hasUnassignedVars(F)

* level & level +1

« A& AU {DECIDE(F A) }
e while BCP(F, A) = conflict
e (b, c) &< ANALYZECONFLICT()

* F< FU{c}

e if b <0 then return false
else BACKTRACK(F, A, b)

* return true

level & b

F={cicc3c4cCs5¢Ce...,C9}
Cls

C2:
C3:
C4:
Cs:
Ce:

=X VX2V ixy
Rt V B VG

X3 V TIX4

X4 V X5 V X¢
X5 V X7

IXg V X7 V TIXg

111

CDCL by example 11

F={ciczc3C4C5Cs,...,C9 }
C| : Bl V X2 V

. R V e Vs

+ CDCL(F): i —
A< () cr: % vEV|
: X5 V Xs
. :f BCIP(F, A) = conflict then return false .. <y, v %
e |eve éo Cs: Xg V X7 V TIXg
* while hasUnassignedVars(F)
* level & level +1
« A& AU {DECIDE(F A) }
e while BCP(F, A) = conflict
e (b, c) &< ANALYZECONFLICT()
* F<& FU{c}

e if b <0 then return false
else BACKTRACK(F, A, b)
level & b

* return true 112

CDCL by example 12

F={ciczc3C4C5Cs,...,C9 }
C| : Bl V X2 V

. R V e Vs

+ CDCL(F): i —
c A& {} C4:X4VXSVX6
. :f BCIP(F, A) = conflict then return false .. <y, v %
e |eve éo Cs: Xg V X7 V TIXg
* while hasUnassignedVars(F)
* level & level +1
« A & AU {DECIDE(F, A) }
e while BCP(F, A) = conflict
mmm) ¢ (b, c) & ANALYZECONFLICT()
* F<& FU {c}

e if b <0 then return false
else BACKTRACK(F, A, b)
level & b

e return true (1,x1 v -x4) 113

CDCL by example 13

F =4 ci,¢2,63,C4;/C5;/Chie5CIiE }
Ci: X VX2 V TIX4

* CDCL(F): “H M N
c A& {} C3: X3 V TiX4
« if BCP(F, A) = conflict then return false €% X4 VXS VXe
C5: —IX5 V B
e level & 0

Ce: Xg V X7 V TIXg

* while hasUnassignedVars(F)
* level & level +1
« A& AU {DECIDE(F, A) }
e while BCP(F, A) = conflict
mm) . (b, c) & ANALYZECONFLICT()
e F & FU{c}
e if b <0 then return false

else BACKTRACK(F, A, b)
level & b

e return true (1,-x1 v -x4) 11

CDCL by example 14

* CDCL(F):
c A&}

 if BCP(F, A) = conflict then return false

e level &0

* while hasUnassignedVars(F)

* level & level +1

« A& AU {DECIDE(F A) }
e while BCP(F, A) = conflict

e (b, c) ¢ ANALYZECONFLICT()
* F&FU({c}

e if b<0then return false
mmm) else BACKTRACK(F, A, b)

* return true

level & b

(1,-x1 v -x4)

F = { ci|, C2, C3, C4, C5,Cé4, ..., C9, C }
C:
C2
C3.
C4.
Cs.
Cs.

C

=X VX2 VX4
=X VXxXa VX3
X3 V X4

X4 V X5 V X¢
X5 V X7

IXg V X7 V T1Xg

‘N V X4

115

CDCL by example 14

F={ €i;63;03;C4.€5:C%;...5.69 €.}

e CDCL(F): Ci: X V X V TiX4
oAé{} C2: X3 VX2 V X3
« if BCP(F, A) = conflict then return false < ™ Vv Txa

C4: X4 V X5 V X¢
C5: "IXs V X7
Ce: Xg V X7 V T1Xg

e level & 0
* while hasUnassignedVars(F)
* level & level +1

Conflict clause is unit

s ASCAU { DEC|DE(F, A) } c XV IX4 < after backtracking

e while BCP(F, A) = conflict
+ (b, ¢) < ANALYZECONFLICT()
e F & FU{c}
e if b <0 then return false

mmm) else BACKTRACK(F, A, b)
level &< b

e return true (1,-x1 v -x4) 116

Implication graph

Implied literal
* An implication graph G =(V, E) is a
DAG that records the history of cé\/
decisions and the resulting deductions

derived with BCP
* v € Vis aliteral (or k) and the decision

level at which it entered the current
partial assignment (PA) _
. Conflict
° (V, W) EEiffv# W, =V € antECEdent(W), Decision literal

and (v, w) is labeled with antecedent(w)

* A unit clause c is an antecedent of its
sole unassigned literal

117

Quiz 3

* What clauses gave rise to this implication graph?
°cl:
°*C2:
°*C3:
°* 4.

118

Quiz b

* What clauses gave rise to this implication graph?
°cl:
°*C2:
°*C3:
°* 4.

119

Quiz b-2

* What clauses gave rise to this implication graph?

°cl:
°*C2:
°*C3:
°c4.
* c5:-%x5

Assignments at ground
(0) level are implied by
unary clauses

120

How to learn a conflict clause?
-x1V -x4

CDCL(F) ”

(@@
=

(b, c) + ANALYZECONFLICT()

* A conflict clause is implied by
F and it blocks PAs that lead to
the current conflict

* Every cut that separates
sources from the sink defines
a valid conflict clause

121

Unique implication points (UIPs)
-x1V -x4

* AUIP is any node in the
implication graph other than the
conflict that is on all paths from
the current decision literal (lit@d)

to the conflict (k@d)

First ED_‘/
e A first UIP is the UIP that is closest J%\

to the conflict
Cut after the first unique

implication point to get the
shortest conflict clause

122

ANALYZECONEFLICT: Computmg the conflict
clause

« ANALYZECONFLICT()

d & level(conflict)

F

C|:
C2.
X3V oIxX4

: X4V X5V Xe
X5 VX7

DX V X7 V T1Xg

if d =0then return-1 -

c <& antecedent(conflict)

repeat

{ c1, c2, €3, C4, C5, Cg, .
=X V X2 V Xy
X VvV xa VX3

* t & lastAssignedLitAtLevel(c, d)

e v & varOfLit(t)

e ante & antecedent(t)

Binary resolution rule

* c & resolve(ante, ¢, v) ¢ AVB, “BVC
until onelLitAtLevel(c, d)

b <.
return (b, c)

AvC

-x1V -x4

Resolution is a basic operation in the
propositional logic. To satisfy both AV B
and -B V C, we must satisfy AV C

Example:

e c=c2,t=x2,v=x2, ante=cl

e c=-x1Vx3V-x4,t=x3,v=
X3, ante=c3

e c=-x1V -x4, done!

123

ANALYZECONFLICT: Computing the conflict

clause 2

 ANALYZECONFLICT()
e d & level(conflict)
if d =0 then return -1

repeat

c <& antecedent(conflict)

* t & lastAssignedLitAtLevel(c, d)

e v & varOfLit(t)

e ante & antecedent(t)

e c & resolve(ante,
until oneLitAtLevel(c,
b &< assertinglevel(c)
return (b, c)

C, V)

-x1V -x4

d) Second highest decision level for
any literal in c, unless cis unary. In

; that case, its asserting level is zero

ﬁ

By construction, cis unitat b
(since it has only one literal at
the current level d)

124

Decision heuristics

e CDCL(F):
c A&} Dynamic Largest Individual Sum (DLIS)
 if BCP(F, A) = conflict then return false * Choose the literal that satisfies the most
* level <0 unresolved clauses

* while hasUnassignedVars(F)

* level & leyel +
* A & AU {DECIDE(F, A)} | L wit
« while BCP[F, AJ= conflict * Simple and intuitive

* (b,) < ANALYZECONFLICT() . Bu°t e:cp))r?\rlllslie\/;’:cy of making a decision
* F< FU{c}

proportional to the number of clauses

e if b <0 then return false

else BACKTRACK(F, A, b)
level & b

* return true

125

Decision heuristics 2

e CDCL(F):
c A& {})

 if BCP(F, A) = conflict then return false

e level & 0

* while hasUnassignedVars(F)

e level & leyel +

A< AU

 while BCP
* (b, c) & ANALYZECONFLICT()

oFé

e if b <0 then return false
else BACKTRACK(F, A, b)

* return true

DECIDE(F, A)

F U {c}

level & b

Variable State Independent Decaying Sum (VSIDS)

Count the number of all clauses in which a literal
appears, and periodically divide all scores by a
constant (e.g., 2)
* For each literal [, maintain a VSIDS score
* Initially: set to cnt(l)
* Increment score by 1 each time it appears in an
added (conflict) clause
* Divide all scores by a constant (say 2) periodically
(say every N backtracks)
Variables involved in more recent conflicts get higher
scores
Constant decision time when literals kept in a sorted
list

126

Adversarial Search

Cost -> Utility!

«

s
()
u]

o]
; ? -

e

“Standard” Games

e Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

 Game formulation:
* States: S (start at s)
e Players: P={1...N} (usually take turns)
e Actions: A (may depend on player / state)
* Transition Function: SXxA —> S
e Terminal Test: S — {t,f}
e Terminal Utilities: SxP —> R

* Solution for a player is a policy: S —> A

128

Single-Agent Trees: Value of a State

Value of a state: Non-Terminal States:
The best ac(hle;/ab)le V(s) = max)V(s’)
outcome (utility n s’ €children(s
from that state /\
- /

T T~ T T~
Ol B B G

Terminal States:

V(s) = known s

Adversarial Game Trees: Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
Vis) = max V(s V(s = min Vi(s)
s’ €successors(s) s€Esuccessors(s’)

Terminal States:
V(s) = known 130

Minimax Search

Minimax values:

* Deterministic, zero-sum games: computed recursively

* Tic-tac-toe, chess, checkers
* One player maximizes result max
* The other minimizes result

min
* Minimax search:
A state-space search tree / \ / \
 Players alternate turns / \ / \
* Compute each node’s minimax value: the best 8 2 5 6
achievable utility against a rational (optimal)
adversary Terminal values:

part of the game

131

Minimax Implementation (Dispatch)

/def max-value(state): D
initialize v = -0
for each successor of state:
v = max(v, value(successor))

return v
)

/def min-value(state): N
initialize v = +o0
for each successor of state:
v = min(v, value(successor))

return v
4

132

Example

e Actions?

Pseudocode for Minimax Search

def max_value(state):
V(s) = max V(s),
if state.is_leaf: a

return state.value where s’ = result(s, Cl)
TODO Also handle depth limit

best_value = -10000000 a = argmax V(s"),
a
for action in state.actions: where s’ = T@SUlt(S, Cl)

next _state = state.result(action)

next_value = min_value(bext_state)

if next_value > best value:
best_value = next_value

return best_value

def min_value(state): 134

Quiz
* Minimax search belongs to which class?

A) BFS
B) DFS
C) UCS
D) A*

Minimax Efficiency

* How efficient is minimax?
* Just like (exhaustive) DFS
* Time: O(b™)
e Space: O(bm)

e Example: For chess, b = 35, m = 100
* Exact solution is completely infeasible
* But, do we need to explore the whole tree? = =
* Humans can’t do this either, so how do we play chess?
* Bounded rationality — Herbert Simon

136

Resource Limits: Game Tree Pruning

The order of generation matters: more pruning
is possible if good moves come first

137

Game Tree Pruning: Alpha-Beta Pruning

* General configuration (MIN version)

MAX
* We're computing the MIN-VALUE at some node n
* We're looping over n’s children MIN
* n’s estimate of the childrens’ min is dropping :
* Who cares about n’s value? MAX
* Let a be the best value that MAX can get at any choice
point along the current path from the root MAX

* |f n becomes worse than a, MAX will avoid it, so we can
stop considering n’s other children (it’s already bad MIN
enough that it won’t be played)

* MAX version is symmetric

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B): def min-value(state, a, B):
initialize v = -0 initialize v = +o0
for each successor of state: for each successor of state:
v = max(v, value(successor, a, B)) v = min(v, value(successor, a, B))
if v> B returnv ifv<areturnv
a = max(a, v) B = min(pB, v)

return v return v

139

Quiz

Which branches are pruned? /\

(Left to right traversal)
(Select all that apply)

P

10

50

140

Quiz 2

Which branches are pruned? /\

(Left to right traversal) 3 h

A) e,

B) g, v v
C)g Kk, |

D) g, n b e i I

/ \
10 6 1

ARV

20

141

Quiz 2 -1

10

b

FAN- A

e

Alpha-Beta Pruning Properties

This pruning has no effect on minimax value computed for the root!

Values of intermediate nodes might be wrong max
* Important: children of the root may have the wrong value

min

Good child ordering improves effectiveness of pruning

With “perfect ordering”: v
 Time complexity drops to O(b™?2) 10 10 0
* Doubles solvable depth!
e Chess: 1M nodes/move => depth=8, respectable
* Full search of complicated games, is still hopeless...

* This is a simple example of metareasoning (computing about what to compute)

Depth-limited search

Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search
* Instead, search only to a limited depth in the tree

* Replace terminal utilities with an evaluation function for non-
terminal positions

Example:
* Suppose we have 100 seconds, can explore 10K nodes / sec
* So can check 1M nodes per move
* For chess, b = 35 so reaches about depth 4 — not so good
* o-f3 reaches about depth 8 — decent chess program

Guarantee of optimal play is gone
More plies makes a BIG difference
Use iterative deepening for an anytime algorithm

v

/

? ?

144

max

min

max

Expectimax Search

chance

Why wouldn’t we know what the result of an action will be?
* Explicit randomness: rolling dice
* Unpredictable opponents: the ghosts respond randomly
* Unpredictable humans: humans are not perfect 10] |10 9 100
* Actions can fail: when moving a robot, wheels might slip

Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax)
outcomes

Expectimax search: compute the average score under optimal play
* Max nodes as in minimax search
e Chance nodes are like min nodes but the outcome is uncertain
e Calculate their expected utilities

* |.e. take weighted average (expectation) of children

Later, we’ll learn how to formalize the underlying uncertain-result problems as Markov
Decision Processes

[Demo: min vs exp (L7D1,2)]

Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def max-value(state): def exp-value(state):
initialize v = -0 initialize v=0
for each successor of state: < > for each successor of state:
v = max(v, value(successor)) p = probability(successor)

return v v += p * value(successor)
returnv

146

Expectimax Pseudocode 3

function value(state)
e if state.is_leaf
 return state.value

e if state.player is MAX

e return max value(state.result(a))

a in state.actions
e if state.player is MIN

e return min value(state.result(a))

a in state.actions

e if state.player is CHANCE

e return sum P(s) *value(s)

s in state.next_states

147

Example

12

15

Quiz

Expectimax tree search:

Left

Which action do we
choose?

A: Left

B: Center

C: Right 1/4
D: Eight 1/4

4
12 8

Center

Right

1/3

12

2/3

Quiz 2

Expectimax tree search:
Which action do we L eft
choose?

34+2+42=7

1/4 1/2

C: Right

1/4

\ 4
12 8

Center

4+3=7

1/2

Right

4+4=8

1/3

12

2/3

Expectimax: Depth-Limited

O

400

300

%»Uq

E]

]

\

Estimate of true
expectimax value
(which would
require a lot of
work to compute)J

492

362

Quiz: Informed Probabilities

* Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

* Question: What tree search should you use?

* Answer: Expectimax!

* To figure out EACH chance node’s probabilities,

QQO This kind of thing gets very slow very quickly
0.1 0.9 . .
* Even worse if you have to simulate your

opponent simulating you...

A/\ A/\ e ... except for minimax and maximax, which
have the nice property that it all collapses into
one game tree

This is basically how you would model a human, except for their utility: their utility might be the
same as yours (i.e. you try to help them, but they are depth 2 and noisy), or they might have a
slightly different utility (like another person navigating in the office)

Dangerous Pessimism/Optimism

Assuming the worst case when it’s not likely Assuming chance when the world is adversarial

153

Assumptions vs. Reality

Adversarial Ghost Random Ghost
NS Won 5/5 Won 5/5
Pacman Avg. Score: 483 Avg. Score: 493
Expectimax Won 1/5 Won 5/5
Pacman Avg. Score: -303 Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble

Ghost used depth 2 search with an eval function that seeks Pacman _
[Demos: world assumptions (L7D3,4,5,6)]

MEU Principle

Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

* Given any preferences satisfying these constraints, there exists a real-valued
function U such that:

UA)>U(B) & A= B
U(lp1,S1; --- ;5 pn,Sn]) = > p;U(S;)

* j.e. values assigned by U preserve preferences of both prizes and lotteries!

* Maximum expected utility (MEU) principle:
* Choose the action that maximizes expected utility

* Note: an agent can be entirely rational (consistent with MEU) without ever representing or
manipulating utilities and probabilities

* E.g., alookup table for perfect tic-tac-toe, a reflex vacuum cleaner

155

Markov Decision Processes

Markov Decision Processes

* An MDP is defined by:

e Asetofstatess €S
e Asetof actionsa € A

e A transition function T(s, a, s’)

* Probability that a from s leads to s/, i.e., P(s’| s, a)
* Also called the model or the dynamics

* Areward function R(s, a, s’)
* Sometimes just R(s) or R(s’)

* A start state

* Maybe a terminal state

 MDPs are non-deterministic search problems
* One way to solve them is with expectimax search
* WEe’'ll have a new tool soon

157
[Demo — gridworld manual in%ro (L8D1)]

What is Markov about MDPs?

* “Markov” generally means that given the present state, the
future and the past are independent

* For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = 3/|St — StaAt = Ay, Si—1 = St—1,At—1, .50 = So)

Andrey Markov
P(St_|_1 = 8/|St = S¢, At = Clt) (1856-1922)

* This is just like search, where the successor function could only
depend on the current state (not the history)

158

Policies

* |In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

* For MDPs, we want an optimal
policy t*: S > A

* A policy 7 gives an action for each state

* An optimal policy is one that maximizes
expected utility if followed

* An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03 for
all non-terminals s

159

Optimal Policies

160

MDP Search Trees

* Each MDP state projects an expectimax-like search tree

A S a S is a state

L
a
o

£

(s,a,s’) called a transition

T(s,a,s") = P(s’[s,a)

R(s,a,s’)

161

Utilities of Sequences: Discounting

* How to discount?

e Each time we descend a level, we multiply in the -
discount once
<
* Why discount? = ,
* Reward now is better than later T

* Can also think of it as a 1-gamma chance of ending A
the process at every step Yoo<

e Also helps our algorithms converge

e Example: discount of 0.5

2
e U([1,2,3]) =1*1 + 0.5*2 + 0.25*3 & ’y <

* U([1,2,3]) < U([3,2,1])

Utilities of Sequences: Stationary Preferences

* Theorem: if we assume stationary preferences: :

\
[alaana---] - [bl,bz,...] S @

0

[Tv ai,az, ..] - [T, bl,bg, .]

* Then: there are only two ways to define utilities

- Additive utility: U([rg,7r1,72,...]) =rg+7r1 + 12
* Discounted utility: U ([rg,r1,72,...]) =719+ r1 + 72742 .

163

Quiz: Discounting

* Given: 10 1

a b C d e
* Actions: East, West, and Exit (only available in exit states a, e)

* Transitions: deterministic

* Quiz 1: For y =1, what is the optimal policy? 10| < | < | <«

* Quiz 2: For y=0.1, what is the optimal policy? 10| « | < | »

* Quiz 3: For which y are West and East equally good when in state d?

1y=101v3

Infinite Utilities?!

* Problem: What if the game lasts forever? Do we get infinite rewards?

e Solutions:

* Finite horizon: (similar to depth-limited search)
* Terminate episodes after a fixed T steps (e.g. life)
* Gives nonstationary policies (r depends on time left)

* Discounting:useO0O<y<1
U([ro,.--roc]) = > 't < Rmax/(1 —7)
t=0
* Smaller y means smaller “horizon” — shorter term focus

* Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)

165

Racing Search Tree

* We're doing way too much work
with expectimax!

* Problem: States are repeated
* |dea: Only compute needed quantities

once du. A &

Q m fl fm m

* |dea: Do a depth-limited computation, ||

but with increasing depths until
change is small
* Note: deep parts of the tree eventually

don’t matterify<1
THTUREIEEIRELL TR TR THIIRLLL

166

Optimal Quantities

* The value (utility) of a state s:

* V*(s) = expected utility starting in s and
acting optimally

* The value (utility) of a g-state (s,a):

* Q*(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

* The optimal policy:
* 1*(s) = optimal action from state s

Sis a
state

(s, a)is a
g-state

(s,a,s’) is a
transition

167

Values of States

* Fundamental operation: compute the (expectimax) value of a stat
* Expected utility under optimal action
* Average sum of (discounted) rewards)
* This is just what expectimax computed! / S, a

* Recursive definition of value:

V*(s) = max Q' (s,0)
Q*(s,a) :Z T(S,a,S/)[R(s,a,s’)-l- Y V*(s’)]
V*(s) = m}xZ/T(s, a,s')[R(s,a,s") +yV*(s')]

it ’
7 S,a,S

Time-Limited Values :

* Key idea: time-limited values

* Define V,(s) to be the optimal value of s if the game ends in k more time
steps
* Equivalently, it’s what a depth-k expectimax would give from s

& Vo(@)
o 7\‘
& & &
o o O \‘i)

169
[Demo — time-limited values (L8D4)]

Value |teration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vit1(s) « max3 T(s,a,8) [R(s,a,) +9Vi(sH]
S

Repeat until convergence, which yields V*

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
* Basic idea: approximations get refined towards optimal values
* Policy may converge long before values do

170

Overheated

S: 1
Vi F: .5*%2+.5%2=2

K { 0 0 0} Vigr(s) max S T(s,a,¢) [R(s,a,8) 1 V()]

S

Assume no discount!

171

Convergence

How do we know the V, vectors are going to converge? Vi (3) Vk—l—l (5)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

Proof Sketch:

* For any state V| and V,,; can be viewed as depth k+1
expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V., has actual

rewards while V, has zeros / \ /
* That last layer is at best all Ryax

* Itis at worst Ry

* But everything is discounted by y* that far out
* SoV, and V,,; are at most y* max|R| different
* So as k increases, the values converge

Value Iteration (Revisited)

* Bellman equations characterize the optimal values:
*k — / / 1
V*(s) = maaXZ:T(S,CL,S) [R(s,a,s)+~ V7*(s)}

S

* Value iteration computes them:

Viet1(s) < mC?XZT(S, a,s) {R(s, a,s’) + ’ka(s’)}

* Value iteration is just a fixed point solution method

* ... though the V), vectors are also interpretable as
time-limited values

173

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

7 V*(s) = max Q*(s,a)

Q* (s, a) :Z T(s,a,8")[R(s,a,s)+ 7 V*(s')]
V¥ (s) = mZaXZ/T(S, a,5)[R(s,a,5") +yV*(s))]

Policy Extraction: Computing [§
Actions from Values

e Let’s imagine we have the optimal values V*(s)

e How should we act?
* |t’s not obvious!

* We need to do a mini-expectimax (one step)

7*(s) = arg maXZT(s, a,s)[R(s,a,s) +~V*(s)]
a
S/
* This is called policy extraction, since it gets the policy implied by the
values

175

Policy Extraction: Computing
Actions from Q-Values

* Let’s imagine we have the optimal
g-values:

* How should we act?
* Completely trivial to decide!

m*(s) = arg max Q*(s,a)

* Important lesson: actions are easier to select from g-values than
values!

176

Problems with Value Iteration

* Value iteration repeats the Bellman updates:

Viet1(8) < mC?XZT(S, a,s) [R(S, a,s’) + 'ka(s’)}

* Problem 1: It’s slow — O(S2A) per iteration
* Problem 2: The “max” at each state rarely changes

* Problem 3: The policy often converges long before the values

Policy Iteration

 Alternative approach for optimal values:

 Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

» Step 2: Policy Improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

* Repeat steps until policy converges

* This is Policy Iteration
* |t’s still optimall
e Can converge (much) faster under some conditions

178

Policy Evaluation: Fixed Policies

Do the optimal action Do what 7 says to do

-"S,a,8

.
A s
* Expectimax trees max over all actions to compute the optimal values

* If we fix some policy 7t(s), then the tree would be simpler — only one action per
state
* ... though the tree’s value would depend on which policy we fixed 179

Policy Evaluation: Utilities for a Fixed Policy

* Another basic operation: compute the utility of a state s under a
fixed (generally non-optimal) policy

7(s)

) s, n(s)

* Define the utility of a state s, under a fixed policy =:

V7(s) = expected total discounted rewards starting in s and following & N
S7 TC(S)/S
.

* Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) +~V"(s)]

180

Policy Evaluation: Implementation

* How do we calculate the V’s for a fixed policy n?

* |dea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vg (s) =0 5iT(s),s

ka_|_1(s) — ZT(S, 7w(s),s)[R(s,7(s),s) + nykW(s’)]

* Efficiency: O(S?) per iteration

* |dea 2: Without the maxes, the Bellman equations are just a linear system
» Solve with MATLAB (or your favorite linear system solver)

Policy Iteration

 Evaluation: For fixed current policy m, find values
with policy evaluation:

* Iterate until values converge:

Vit 1 (s) < D T(s,mi(s),s") |R(s,mi(s),s") + v V()

* Improvement: For fixed values, get a better (why? exercise) policy
using policy extraction

* One-step look-ahead:

mi+1(s) = arg maXZT(S, a,s’) [R(s, a,s’) + WVWZ'(S/)}

S

182

Value Iteration vs. Policy Iteration

Both value iteration and policy iteration compute the same thing (all optimal
values)

In value iteration:
e Every iteration updates both the values and (implicitly) the policy
 We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

* We do several passes that update utilities with fixed policy (each pass is fast because
we consider only one action, not all of them)

» After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
* The new policy will be (or we’re done)

Both are dynamic programs for solving MDPs

Reinforcement Learning

What Just Happened?

* That wasn’t planning, it was learning!
» Specifically, reinforcement learning
 There was an MDP, but you couldn’t solve it with just computation
* You needed to actually act to figure it out

* Important ideas in reinforcement learning that came up

. : you have to try unknown actions to get information
. . eventually, you have to use what you know

. . even if you learn intelligently, you make mistakes

. : because of chance, you have to try things repeatedly

. . learning can be much harder than solving a known MDP

185

Reinforcement Learning

* What if we didn’t know P(s’|s,a) and R(s,a,s’)?

Value iteration:
Q-iteration:
Policy extraction:

Policy evaluation:

Policy improvement:

Vies1(s) = maxz R D [Beres) + 1V (sD], Vs
Qis1(s,@) = Za@s—m RS +y max Qu(s',a)], ¥sa
Ty (s) = arg;naxi ReHsD[B@rrS) +1V(s)], Vs

Vi (s) =) ReHermtSTI (RS + Y VE(s)], Vs
Tnew (s) = as;ggaaxZW[m Fyvmoa(sh], Vs

186

Reinforcement Learning 2

Agent

State: s
Reward: r

Environment

* Basic idea:
* Receive feedback in the form of rewards
* Agent’s utility is defined by the reward function
* Must (learn to) act so as to maximize expected rewards
e All learning is based on samples of outcomes!

Actions: a

?_—:—'——_;_%

187

—

Reinforcement Learning 3

e Still assume a Markov decision process (MDP):
 Asetof statess €S
* A set of actions (per state) A
A model T(s,a,s’)
* Areward function R(s,a,s’)

Overheated

e Still looking for a policy n(s)

* New twist: don’t know T or R
* |.e. we don’t know which states are good or what the actions do
* Must actually try actions and states out to learn

188

Offline (MDPs) vs. Online (RL)

g

s

Offline Solution Online Learning

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL

e Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.

we’ll cover only in context of Q-learning
190

Model-Based Reinforcement Learning

e Model-Based Idea:

* Learn an approximate model based on experiences
e Solve for values as if the learned model were correct

e Step 1: Learn empirical MDP model
 Count outcomes s’ for each s, a
* Normalize to give an estimate of 7'(s, a, s’)
* Discover each R(s,a,s’) when we experience (s, a, s’)

e Step 2: Solve the learned MDP

* For example, use value iteration, as before

(and repeat as needed) 191

Example: Model-Based RL

Input Policy w

Assume:y=1

Observed Episodes (Training)

Episode 1

N\

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 3

N\

/E, north, C, -1

C,east, D, -1
D, exit,

X, +10

~

J

Episode 2

N\

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

N\

g E, north, C, -1

C, east, A, -1
A, exit, x, -10

~

J

Learned Model

T(s,a,s")

4 T(B, east, C) =1.00

T(C, east, D) =0.75
T(C, east, A) = 0.25

.

~

)

R(s,a,s")

(" R(B, east, C) = -1
R(C, east, D) =-1
R(D, exit, x) = +10

.

~

)

192

Analogy: Expected Age

Goal: Compute expected age of students

Known P(A)
E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a;, a5, ... ay]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this \7 Pla) = num(a) Z Why does this
work? Because N ElA] ~ 1 Za' work? Because
eventually you X N &=~"" samples appear
learn the right ElA] = Z P(a)-a Z with the right

model. a j \ frequencies.

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL

e Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
e Value learning — learns value of ; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.

we’ll cover only in context of Q-learning
194

Passive Model-Free Reinforcement Learning

» Simplified task: policy evaluation
* Input: a fixed policy 7(s)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
e Goal: learn the state values

* In this case:
* Learner is “along for the ride”

and learn from experience
* This is NOT offline planning! You actually take actions in the world

195

Direct Evaluation

e Goal: Compute values for each state under

* |dea: Average together observed sample values
e Act accordingtom

* Every time you visit a state, write down what the sum of discounted rewards
turned out to be

* Average those samples

* This is called direct evaluation

196

Example: Direct Evaluation

Input Policy & Observed Episodes (Training) Output Values
Episode 1 Episode 2
g B, east, C, -1 N[B, east, C, -1)
C, east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
N L J
Episode 3 Episode 4
/E, north, C, -1 N E, north, C, -1)
C,east, D, -1 C, east, A, -1
Assume:y = 1 D, exit, x, +10 A, exit, x,-10 If B and E both go to C
_ VRN) under this policy, how can

their values be different?

Problems with Direct Evaluation

Output Values

* What’s good about direct evaluation?
* |t's easy to understand

* |t doesn’t require any knowledge of T, R

* |t eventually computes the correct average values,
using just sample transitions

 What bad about it?

e |t wastes information about state connections
* Each state must be learned separately

If Band E both go to C
under this policy, how can
* So, it takes a long time to learn their values be different?

198

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL
* Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
e Value learning — learns value of ; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

199

Why Not Use Policy Evaluation?

e Simplified Bellman updates calculate V for a fixed policy:
* Each round, replace V with a one-step-look-ahead layer over V

Voi(s) =0
Vk—|—1(5) — ZT(S 7w(s),s)[R(s,7(s),s) + nykW(s)]

s’

5P TE(S) S’

* This approach fully exploited the connections between the states
* Unfortunately, we need T and R to do it!

* Key question: how can we do this update to V without knowing T and R?
* In other words, how do we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation? I/f\ﬁ

* We want to improve our estimate of V by computing these averages:™ >
Viep1(s) < Zj T(s,7m(s),s)[R(s,7(s),s") + Vi (s)]
* |dea: Take sarriples of outcomes s’
(by doing the action!) and average
sample; = R(s,m(s),s7) + vV (s1)
samples = R(s,m(s),s5) + YV (s5)

samplen, = R(s,m(s),s,) + ’YVkW(Sr/n,)

Almost! But we can’t

1 rewind time to /
T ' get sample
Vk-l—l (s) < n Z sample; after sample from state s
1

Temporal Difference Value Learning

S
* Big idea: learn from every experience!
* Update V(s) each time we experience a transition (s, a, s’, r) n(s)
* Likely outcomes s’ will contribute updates more often s, Tt(s)
* Temporal difference learning of values N

* Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s’) +~V7™(s")
Update to V(s): VT (s) + (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) «+ V™(s) 4+ a(sample — V7 (s))

202

Example: Temporal Ditfference Value Learning

States

Observed Transitions

[B, east, C, -2 J [C, east, D, -2 J

EX1DEIEIE

VT(s) + (1 = a)V7(s) + a |R(s,m(s),s) + 4V (s

Problems with TD Value Learning

* TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

* However, if we want to turn values into a (new) policy, we’re sunk:

m(s) = argmax Q(s,a)

Q(s,a) = ZT(S, a,s) [R(S, a,s’) + WV(S,)}

* |dea: learn Q-values, not values
* Makes action selection model-free too!

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL
* Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Q/learning —learns Q values of (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

Q-Value lteration

 Value iteration: find successive (depth-limited) values
e Start with V,(s) = 0, which we know is right
* GivenV,, calculate the depth k+1 values for all states:

Viet1(s) <+ mC?XZT(S, a,s) {R(s,a, s + nyk(s’)}

S

* But Q-values are more useful, so compute them instead
* Start with Qg(s,a) = 0, which we know is right
* Given Q,, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a)

Q-Learning

* Q-Learning: sample-based Q-value iteration
Qt1(s,a) ¢ Y T(s,0,8) |R(s.a,5) +7 maxQy(s',a')

* Learn Q(s,a) values as you go
* Receive a sample (s,a,s’,r) AAA
* Consider your old estimate: Q(s,a)

* Consider your new sample estimate: |\ ..o oicy M.M |

sample = R(s,a,s’) + ~ max Q(s',a’) evaluation! }XK

* Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworzlod7 (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Q-Learning Properties

* Amazing result: Q-learning converges to optimal policy --
|

* This is called off-policy learning

* Caveats:
* You have to explore enough
* You have to eventually make the learning rate
small enough
* ... but not decrease it too quickly
e Basically, in the limit, it doesn’t matter how you select actions (!)

208

Reinforcement Learning -- Overview

 Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL

e Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.

we’ll cover only in context of Q-learning
209

Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
* Goal: learn the optimal policy / values

* In this case:
* Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

* This is NOT offline planning! You actually take actions in the world and find
out what happens...

210

Exploration vs. Exploitation

b7 7

AND
Srennc!

L £T0
G2

How to Explore?

* Several schemes for forcing exploration

e Simplest: random actions (e-greedy)
* Every time step, flip a coin
* With (small) probability €, act randomly
* With (large) probability 1-¢, act on current policy

 Problems with random actions?

* You do eventually explore the space, but keep thrashing around
once learning is done

* One solution: lower € over time
* Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grig (L10D5)]
[Demo: Q-learning — epsilon-greedy -- crawﬁer (L10D3)]

A commonly used ‘exploration function’ is

Exploration Functions — /@m =u+c/ios(1/5) /n, which i

derived by Chernoff-Hoeffding inequality
and ¢ is confidence level

 When to explore?

 Random actions: explore a fixed amount

* Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

* Exploration function

e Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,m) = u+ k/n

Regular Q-Update: Q(s,a) < R(s,a,s") + v max Q(s', a")
. Modified Q-Update: Q(s,a) <« R(s,a,s") -I—*ymax f(Q(s',d"), N(s',a"))

 Action selection: Use a « argmax, Q(s,a)
* Note: this propagates the “bonus” back to states that lead to unknown states as well!

213
[Demo: exploration — Q-learning — crawler — exploration function (L10D4)]

The Story So Far: MDPs and RL

Known MDP: Offline Solution

~

&

Goal
Compute V*, Q*, n*

Evaluate a fixed policy

Technique

Value / policy iteration

Policy evaluation

/

Unknown MDP:

Model-Based

-~

Goal

Compute V*, Q*, n*

Evaluate a fixed policy

\

~

Technique

VI/PIl on approx. MDP

PE on approx. MDP

Unknown MDP:

Model-Free

-~

Goal

Compute V*, Q*, n*

Evaluate a fixed policy

-

~

Technique

Q-learning

Value Learning

J

Multi-armed Bandits

Setting: Finite-armed stochastic bandits

items/products/movies/news/...

CTR/profit/...

* There are L arms
* Each arm a has an unknown reward distribution v, with unknown mean a(a)
* The bestarmis a™ = argmax, a(a)

n I 'nll' " I

AR wﬁ “"\‘-w-\“

At each time t
* The learning agent selects an arm a;
* Observes the reward X, 1~ v,

bandit feedback

Objective

Maximize the expected cumulative reward in T rounds

T
> a(aa]

t=1

E

Minimize the regret in T rounds
R(T)=T:-a(a*) — E

T
2 “(at)]

t=1

Balance the trade-off between exploration and exploitation
* Exploitation: Select arms that yield good results so far
* Exploration: Select arms that have not been tried much before

Smaller order of T in R(T) is better

UCB — Upper confidence bound [Auer et
al.(2002)]

* With high prob

aze|a,(t) —

7L

Hoeffding’s inequality

sample mean

abilit
2logt

\

To ()

, 0, () +

round t

2logt

\

To(t)

200+
15049 T

-.' ----- } ----- .

100-

504 —

0t—

\ selection times of arm a

till round t

* Principle: optimism in face of uncertainty

* UCB policy:

a; = argmax, &, +

\\l Tq ()

2 log

exploitation

exploration

=

UCB — Upper confidence bound 2

* Regret :
R(T)=0 (ZlogT)

* Proof sketch
* Under good event (w/ high probability)
* Ifarm a is pulled, then
a(a*) < UCB,+ < UCB, < a(a) + 2 radius,

ala®)—a(a)
2

2logt
Ta (1)
8logt
° = Ta(t) S AZ

a

= radius, =

UCB — Upper confidence bound 3

Result from 2000 simulations.

—
(®)]

—
N

v b HW‘MHM‘M ‘

—
N

RN
o

=
(o4

=
o)

Average reward

=
~

—— Greedy
— &-Greedy, £=0.1
== JCB. =2

&
N

&
o

0 200 400 600 800 1000
Step

220

Bayes Nets: Probabilistic Models

Uncertainty

 General situation:

* Observed variables (evidence): Agent knows certain things
about the state of the world (e.g., sensor readings or
symptoms)

* Unobserved variables: Agent needs to reason about other
aspects (e.g. where an object is or what disease is present)

* Model: Agent knows something about how the known
variables relate to the unknown variables

‘
* Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge

222

Probabilistic Inference

* Probabilistic inference: compute a desired probability from other known
probabilities (e.g. conditional from joint)

* We generally compute conditional probabilities
* P(on time | no reported accidents) = 0.90
* These represent the agent’s beliefs given the evidence

* Probabilities change with new evidence:
* P(on time | no accidents, 5a.m.) =0.95
* P(on time | no accidents, 5 a.m., raining) = 0.80
* Observing new evidence causes beliefs to be updated

Inference by Enumeration

* Works fine with

" We want: multiple query
variables, too
* General case:

* Evidencevariables: L1 ... B =€1.--€ | X1 X5, ... X,

« Query* variable: .

 Hidden variables: Hj ... Hy All variables

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence

with the evidence

1
><_
A

—— Z=ZP(Q,61-~ek)
P(Q,e1...ep) = 2 P(@yhl---hmel---e/k) 4 .
hl...hfr X]-,X;,/Xn P(Q‘elek) — ZP(Q7€1...61€)

Answer Any Query from Joint Distributions

* Two tools to go from joint to query
* Joint: P(Hl, Hz, Q,E)

* Query: P(Q | e)
1. Definition of conditional probability
P(Q,e)

P(Qle) = P(e)

2. Law of total probability (marginalization, summing out)

P(Q.€)=)) Plhyhs0Q.0)

hi hy

P(e)=))) P(hhyq.€)
q

h, hy
P(Q,e)

225

Answer Any Query from Joint Distributions

e Joint distributions are the best!

* Problems with joints
 We aren’t given the joint table P(a | e)

* Usually some set of conditional probability
tables

* Problems with inference by enumeration
* Worst-case time complexity O(d")
e Space complexity O(d") to store the joint distribution

Build Joint Distribution Using Chain Rule

Conditional Probability Tables Joint
and Chain Rule

Query

2 ™ pale

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

227

Quiz

Yy

* Variables
* B: Burglary
 A: Alarm goes off
e M: Mary calls
e J: Johncalls
* E: Earthquake! > 'Sk

How many different ways can we write the chain rule?
1

5

5 choose 5

5!

55

SIS

228

Answer Any Query from Condition Probability
Tables

* Bayes’ rule as an example

* Given: P(E|Q), P(Q) Query:P(Q |e)
1. Construct the joint distribution
1. Product Rule or Chain Rule
P(E,Q) = P(E|Q)P(Q)
2. Answer query from joint
1. Definition of conditional probability

P(e,
P(Qle)= }()e(e()?)

2. Law of total probability (marginalization, summing out)

_ P(e, Q)
P(Qle) =S P, d)

P(e’ Q) 229

Bayesian Networks Bayes net

A
* One node per random variable, DAG
* One conditional probability table (CPT) per node: @‘

P(node | Parents(node))

P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B,C) Q

Encode joint distributions as product of conditional
distributions on each variable

P(Xq,...,Xy) = HP(Xil Parents(X;))

230

Answer Any Query from Condition Probability

Tables

Conditional Probability Tables
and Chain Rule

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

o

Joint

Query

fl> P(a|e)

231

Answer Any Query from Condition Probability
Tables 2

Conditional Probability Tables * Problems
and Chain Rule " Huge
e nvariables with d
values

e d" entries

= We aren’t given the
right tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

232

Do We Need the Full Chain Rule?

* Binary random variables

* Fire
e Smoke
e Alarm

233

Answer Any Query from Condition Probability

Tables
Bayes Net Joint

Query

> j> P(a | e)

P(A) P(B|A) P(C|A) P(D|C) P(E|C)

P(Xq, ..., Xy) = HP(XiI Parents(X;))

Probabilistic Models

* Models describe how (a portion of) the world
works

* Models are always simplifications
* May not account for every variable

* May not account for all interactions between
variables

* “All models are wrong; but some are useful.”
— George E. P. Box

 What do we do with probabilistic models?

* We (or our agents) need to reason about unknown
variables, given evidence

* Example: explanation (diagnostic reasoning)
* Example: prediction (causal reasoning)
* Example: value of information

235

(General) Bayesian Networks Baves net

* One node per random variable, DAG @

* One conditional probability table (CPT) per node:
P(node | Parents(node)) 9

P(A,B,C,D) = P(A) P(B) P(C|A,B) P(D|C)

Encode joint distributions as product of conditional
distributions on each variable

P(Xq,...,Xy) = HP(Xl-l Parents(X;))

236

Conditional Independence

* P(Toothache, Cavity, Catch)

* |f | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

* P(+catch | +toothache, +cavity) = P(+catch | +cavity)

* The same independence holds if | don’t have a cavity:
* P(+catch | +toothache, -cavity) = P(+catch| -cavity)

e Catch is conditionally independent of Toothache given Cavity:
* P(Catch | Toothache, Cavity) = P(Catch | Cavity)

* Equivalent statements:
* P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

* P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch |
Cavity)

* One can be derived from the other easily 237

Conditional Independence (cont.)

* Unconditional (absolute) independence very rare (why?)

* Conditional independence is our most basic and robust form of knowledge about
uncertain environments.

* X is conditionally independent of Y given Z X1UY|Z

P Y, Y
if and only if: P(z|z,y) = }():I(:Zzy:)y)

Va,y,z 1 P(x,ylz) = P(z]2) P(y|z)

_ P(a,yl2)P(2)

or, equivalently, if and only if P(ylz)P(z)
Vx,y,z 1 P(z|z,y) = P(z|2) _ P(z|2)P(y|2)P(2)

P(y|z)B(2)

Conditional Independence and the Chain Rule
* Chain rule: P(X1,Xo,... Xpn) = P(X1)P(X2|X1)P(X3|X1,X2) ...

* Trivial decomposition:
P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)

* With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

* Bayes nets / graphical models help us express conditional independence assumptions

239

Bayes’” Nets: Big Picture

* Two problems with using full joint distribution tables
as our probabilistic models:

* Unless there are only a few variables, the joint is WAY too big
to represent explicitly

* Hard to learn (estimate) anything empirically about more
than a few variables at a time

* Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)

* More properly called graphical models
* We describe how variables locally interact

* Local interactions chain together to give global, indirect
interactions

* We first look at some examples

Bayes’ Net Semantics

* A set of nodes, one per variable X

e A directed, acyclic graph

e A conditional distribution for each node

* A collection of distributions over X, one for each
combination of parents values

P(Xl|aqy...an)

* CPT: conditional probability table

. . . 13 77
* Description of a noisy "causal process

A Bayes net = Topology (graph) + Local Conditional Probabilities

241

Probabilities in BNs

* Bayes' nets implicitly encode joint distributions
* As a product of local conditional distributions

* To see what probability a BN gives to a full assignment, multiply all the relevant conditionals
together: n

P(z1,x2,...zn) = || P(z;|parents(X;))

1=1
Toothache @

P(+cavity, 4+catch, -toothache)

=P(-toothache | +cavity)P(+catch | +cavity)P(+cavity)

* Example:

242

Probabilities in BNs 2

Why are we guaranteed that setting
n

P(z1,x2,...xzn) = || P(=z;|parents(X;))
1=1
results in a proper joint distribution?

Chain rule (valid for all distributions): P(z1,22,...2n)

mn
= [[PGy .. 2 1)
1 =1

Assume conditional independences: P(x;|x1,...x;—1) = P(x;|parents(X;))

- Consequence:

=1
Not every BN can represent every joint distribution

* The topology enforces certain conditional independencies

n
P(z1,x2,...2n) = || P(z;|parents(X;))

243

Example: Alarm Network

B P(B)
+b | 0.001
-b | 0.999
A J P(J|A) °
+a | 4 0.9
+a - 0.1
-a +j 0.05
-a -) 0.95
| N —
P(+b, —e,4+a,—j,+m) =

E P(E)

+e | 0.002

-e | 0.998

A M P(M|A)
+a | +m 0.7
+3a -m 0.3
-a +m 0.01
-a -m 0.99

B | E| A | PA|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999

247

Quiz

 Compute P(—c, +s,—1,+wW) PS1C)
+S 0.1
+C
-3 0.9

+5 0.5

. 0.0 “ s | os

A

B. 0.0004
C. 0.001
D. 0.036
E. 0.18
F. 0.198
G. 0.324

P(C)

+C 05
-C 05
P(R|C)
+T 0.8
+C
-r 0.2
+T 02
-C
-r 0.8
P(W|S,R)
+W 0.99
+r
-W 0.01
+3
; +W 09
-W 0.1
+W 0.9
+r
-W 0.1
-S
; +W 0.99
-W 0.01

Conditional Independence Semantics 2

* For the following Bayes nets, write the joint P(4, B, C)

1. Using the chain rule (with top-down order A,B,C)

2. Using Bayes net semantics (product of CPTs)

P(A) P(B|A) P(C|A, B)
P(A) P(B|A) P(C|B)
Assumption:

P(C|A,B) = P(C|B)

Cis independent from A given B

P(A) P(B|A) P(C|A,B)
P(A) P(B|A) P(C|A)
Assumption:

P(C|A,B) = P(C|A)

Cis independent from B given A

P(A) P(B|A) P(C|A,B)
P(A) P(B) P(C|A, B)
Assumption:

P(B|A) = P(B)

A is independent from B ng\G/en {1}

Causal Chains

" Guaranteed X independent of Z ?

* This configuration is a “causal chain™ | |

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no
X: Low pressure Y: Rain Z: Traffic traffic

= |n numbers:
P(x,y,z) = P(z)P(y|lz)P(z|y)
P(+y | +x)=1,P(-y | -x) =1,
P(+z | +y)=1,P(-z|-y)=1

247

Causal Chains 2

11 . ” =] . ?
* This configuration is a "causal chain Guaranteed X independent of Z given Y

Lo=a £~)/ P(z,y, z)
[f P Iy el P(zlz,y) =~ (wf’y)
7 AN _ P(@)P(y|z) P(z]y)
€009 Q0 i
X: Low pressure Y: Rain Z: Traffic — P(Z|y)
Yes!

P(z,y,z) = P(z)P(y|lz)P(z]y) » Evidence along the chain “blocks” the

influence
248

Common Causes

. . . . 11 b4
* This configuration isa common cause
No!

Y: Project i Pr-o_\ed: “

due J Due!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
@ independence is not guaranteed.

= Example:

Project due causes both forums busy
and lab full

sa In numbers:
_‘? Z: Lab full

= P(+x | +y) =1, P(x |)
V)

P(+z|+y)=1,P(-z |-
P(z,y,z) = P(y)P(z|y)P(z|y) "

X: Forums
busy

Common Cause 2

.) .« » " Guaranteed X and Z independent given Y?
* This configuration isa common cause

Y: Project Pm_segt P(z]az,y) — P(wayaz)
due Lk P(CB, y)
_ P)P(z|y) P(z]y)
P(y)P(z|y)

= P(z]y)

Yes!

X: Forums
busy

= Observing the cause blocks influence
P(z,y,2) = P(y)P(aly) P(zly) between effects

250

Common Effect

: : = Are XandY ind dent?
+ Last configuration: two causes of ' " T TEEPEIEED

ohe effect (v-structu res) = Yes: the ballgame and the rain cause traffic, but

o they are not correlated
X: Raining Y: Ballgame

S " Proof:
P(x,y):ZP(az,y,z)
@ @ —ZP (z]z,y)

(&)

— gj :)
_ P(x)P(y)

Z: Traffic

Common Effect 2

: : " Are XandY independent?
* Last configuration: two causes of

one effect (v-structures) = Yes: the ballgame and the rain cause traffic, but

. they are not correlated
X: Raining Y: Ballgame

= (Proved previously)

= Are X and Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases

= QObserving an effect activates influence between

Z: Traffic possible causes

252

Causality?

* When Bayes’ nets reflect the true causal patterns:

e Often simpler (nodes have fewer parents)
» Often easier to think about
» Often easier to elicit from experts

* BNs need not actually be causal

* Sometimes no causal net exists over the domain (especially if
variables are missing)

* E.g. consider the variables Traffic and Drips
* End up with arrows that reflect correlation, not causation

 What do the arrows really mean?

* Topology may happen to encode causal structure
* Topology really encodes conditional independence

P(zi|xy,...2;-1) = P(=z;|parents(X;))

253

Bayes Net Semantics

* A directed, acyclic graph, one node per random
variable

* A conditional probability table (CPT) for each node

* A collection of distributi,ons over X, one for each
combination of parents values

* Bayes' nets implicitly encode joint distributions
* As a product of local conditional distributions

* To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(a:l, o, ... Ccn) = H P(a:i\parents(X@-))
17=1

Size of a Bayes Net

= Both give you the power to calculate

* How big is a joint distribution over N P(X1,Xo,...Xn)
Boolean variables?

2N = BNs: Huge space savings!
= Also easier to elicit local CPTs

* How big is an N-node net if nodes have up
to k parents?

* 9k+1
O(N * 241) .

= Also faster to answer queries

255

Bayes Nets: Assumptions

* Assumptions we are required to make to define the
Bayes net when given the graph:

P(xz;|z1---xi_1) = P(x;|parents(X;))

* Beyond those “chain rule > Bayes net” conditional
independence assumptions

e Often

* They can be read off the graph

256

Example

CO—(D)—~()—~()

e Conditional independence assumptions directly from simplifications

in chain rule:

P(r,y,z,w) = P(x)P(y
= P(z)P(y

XU zly WX, YYZ

r)P(z
x)P(z

r,y)P(w|z,y, 2)
y)P(w|z)

* Additional implied conditional independence assumptions?

W 1L XY How?

Independence in a BN

* Important question about a BN:
* Are two nodes independent given certain evidence?
(tedious in general)

08030

* Question: are X and Z necessarily independent?
* Answer: no. Example: low pressure causes rain, which causes traffic.
e X caninfluence Z, Z can influence X (via Y)
e Addendum: they could be independent: how?

 Example:

The General Case

* General question: in a given BN, are two variables independent (given
evidence)?

* Solution: analyze the graph

* Any complex example can be broken
into repetitions of the three canonical cases

259

Bayes Ball

Active Triples Inactive Triples

* Question: Are X and Y conditionally independent
given evidence variables {Z}? OO0

1. ShadeinZ O/O\O
2. Drop aballat X
3. The ball can pass through any path and

is blocked by any inactive path (ball can move

either direction on an edge) O\.A/O
4. If the ball reachesY, then Xand Y are

conditionally independent given Z

260

Example

R1 B Yes
R 1l B|T

R B|T'

Example 2

LUT\T VYes
LI B Yes
L B|T

L1 B|T
LA B|T,R Yes

Example 3

 Variables:
* R: Raining
e T: Traffic
* D: Roof drips
* S:I'm sad

e Questions:

T
1

D
D|R

Tl D|R, S

Yes

Quiz

* Is X; independent from X, given X,?

X4

X,

X

264

Quiz (cont.)

* Is X; independent from X, given X,?
* No, the Bayes ball can travel through X; ynd Xs.

265

Quiz 2

* Is X, independent from X; given X; and X,?
Xy

266

Quiz 2 (cont.)

* Is X, independent from X; given X; and X,?
* No, the Bayes ball can travel through X5 gnd X.

267

Bayes Nets: Inference

Queries

pqle)=P@ O _ZnZnP@ M hy o

P(e) P(e)
_ P(Q: 8) . Zhl ZhZP(QI h1; hZI 8)
P(Qle)= OBE P ()
P(q, e)

argmaxgeo P(q | e) = argmaxgeq P o)
Zhl ZhZP(CI; hl; hz, 8)
P(e)

= argmaxgeq

nference by Enumeration in Joint
Distributions ks fine wi

multiple query
variables, too

* General case: P
€1...€
* Evidence variables: E/1 ... B, —=e1...€eL X1, X0, ... Xn (Ql 1 k>

« Query* variable: & .
* Hidden variables: Hi ... Hy All variables

x P
0.05

0.25

o |

0.2

0.01 a-——_-a
S5
P(Que1...ep) = > P(Qhi...hrer...ep) 1

hy
' Xl,XZ..Xn P(Qler---er) = - P(Q,e1-ex)

Inference by Enumeration: Procedural Outline

* Track objects called factors
* Initial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r +t | 0.8 +t + 0.3
-r 0.9 +r -t | 0.2 +t -l 0.7

-r +t | 0.1 -t + 0.1
-r -t | 09 -t -l 0.9

* Any known values are selected
 E.g.if we know L = -/, the initial factors are

P(R) P(T|R) P(+4|T)
+r 0.1 +r | +t [0.8 +t +| 0.3
-r 0.9 +r -t | 0.2 -t +| 0.1

-r + [0.1
-t | 09

* Procedure: Join all factors, then sum out all
hidden variables

Operation 1: Join Factors .
* First basic operation: joining factors

* Combining factors:
* Just like a database join
* Get all factors over the joining variable
* Build a new factor over the union of the variables involved

 Example:JoinonR

e P(R) X P(T|R) smmdp P(R,T)

+r 0.1 +r | +t | 0.8 +r | +t | 0.08

-r 0.9 +r | -t |0.2 +r | -t | 0.02

G or | +t |0.1 or | +t | 0.09
-r| -t [0.9 -r | -t | 0.81

- Computation for each entry: pointwise products V7, ¢t ;. P(r,t) = P(r) - P(t|r)

272

Operation 2: Eliminate

* Second basic operation: marginalization

* Take a factor and sum out a variable
* Shrinks a factor to a smaller one

* A projection operation

* Example:

P(R,T)
wTsoss] sum R P
+r | -t | 0.02 ‘ +

-r | +t | 0.09 -1
-r | -t | 0.81

273

Thus Far: Multiple Join, Multiple Eliminate (=
Inference by Enumeration)

P(R)

P(T|R) mmm) P(R,T,L) > P(L)

P(L|T)

Inference by Enumeration in Bayes Net

* Reminder of inference by enumeration: e e

* Any probability of interest can be computed by summing entries
from the joint distribution

* Entries from the joint distribution can be obtained from a BN by °

multiplying the corresponding conditional probabilities

e So inference in Bayes nets means computing sums of
products of numbers: sounds easy!!

* Problem: sums of exponentially many products!

Can we do better?

 Consider

e 16 multiplies, 7 adds
* Lots of repeated subexpressions!

e Rewrite as

e 2 multiplies, 3 adds

z 2 P(B) P(e) P(al B,e) P(/| @) P(m])

= P(B) P(+e) P(+a
+ P(B) P(—e) P(+a
+ P(B) P(+e) P(—a
+ P(B) P(—e) P(—a

* Lots of repeated subexpressions!

B,+e) P(j

B,—e) P(j
B,+e) P(j
B,—e) P(j

+a) P(m
+a) P(m
—a) P(m
—a) P(m

Inference by Enumeration vs. Variable
Elimination

" |dea: interleave joining and marginalizing!

 Why is inference by enumeration so o o,
= Called "Variable Elimination

slow?
= Still NP-hard, but usually much faster than

inference by enumeration

* You join up the whole joint distribution
before you sum out the hidden variables

Variable
Elimination

Enumeration

Inference Overview

* Given random variables Q, H, E (query, hidden, evidence)
— * We know how to do inference on a joint distribution

P(qle) = a P(q,e)
= Xpe(hy,hpy P (0 1 €)

* We know Bayes nets can break down joint in to CPT factors
P(qle) = aZhe{hl,hz}P(h) P(qlh) P(elq)

= a [P(hy) P(qlhi) P(elq) + P(hz) P(qlhz) P(elq)]
— * But we can be more efficient
P(qle) = a P(e|q) Xnegn, n,y P(WP(qlh)

= a P(elq) [P(h1)P(qlhy) + P(hz)P(ql|hy)]

= a P(elq) P(q)

— » Now just extend to larger Bayes nets and a variety of queries

278

Answer Any Query from Bayes Net (Previous)

P(a|e)

P(A) P(B|A) P(C|A) P(D|C)

Next: Answer Any Query from Bayes Net

Bayes Net

Query

> P(a|e)

P(A) P(B|A) P(C|A) P(D|C) P(E|C)

Marginalizing Early! (aka VE)

P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+l

0.3

+t

0.7

-t

+l

0.1

-t

0.9

>

P(R,T)

+r

+t

0.08

+r

-t

0.02

P(T)

-r

+t

0.09

+t

0.17

-r

-t

0.81

-t

0.83

P(L|T)

+t

+l

0.3

P(L|T)

+t

+l

0.3

+t

0.7

+t

0.7

+l

0.1

+l

0.1

0.9

0.9

=S

Lo

P(T, L)

+t

+l

0.051

®

P(L)

+t

0.119

+]

0.134

+l

0.083

0.866

0.747

281

Evidence

* |If evidence, start with factors that select that evidence
* No evidence, uses these initial factors:

P(R) P(T|R) P(L|T)

+r 0.1 +r +t | 0.8 +t + 0.3

-r 0.9 +r -t | 0.2 +t -1 0.7
-r +t | 0.1 -t + 0.1
-r -t 109 -t -1 0.9

« Computing P(L| + 7) , the initial factors become:
P(+r) P(T|+r) P(LIT)
+r 0.1 +r [+t [0.8

+t +| 0.3
+r -t | 0.2 +t | 0.7
-t + | 0.1) _——
-t -1 0.9 - &~

* We eliminate all vars other than query + evidence = =

282

Evidence |l

* Result will be a selected joint of query and evidence
e E.g. for P(L | +r), we would end up with:

P(+r, L) P(L| 4+)

+r | +1 | 0.026 +| | 0.26
+r| -l | 0.074 m—> -1 1 0.74

* To get our answer, just normalize this!

* That’s it!

283

Variable Elimination

* Works fine with

= We want: multiple query
variables, too
* General case: P(Qleq...ex)
» Evidencevariables: 1 ... By =e1...ex | X1 X5 ... X,
« Query* variable: .
 Hidden variables: Hj ... Hy All variables
= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence

with the evidence

1
><_
A

0.05

0.25

0.2
0.01 aﬁ_-_i
—— Z=ZP(Q,€1~-ek)
P(Q,eq...e) = > P(@,hl...hr,el...e/k) 4 |
hi.h

N YT _ = o
" |nterleave joining and summing out X7, X»,... X, P(Qler---ex) = ZP(Q,€1 ex)

General Variable Elimination

* Query: P(QlEl = €1,... Ek = ek)

e Start with initial factors:
* Local CPTs (but instantiated by evidence)

 While there are still hidden variables (not Q or
evidence):
* Pick a hidden variable H
 Join all factors mentioning H
e Eliminate (sum out) H

 Join all remaining factors and normalize

om-ll X

/
ya AN
—' ‘

A

285

Variable Elimination

function VariableElimination(Q, e, bn) returns a distribution over Q

factors &[]
for each var in ORDER(bn.vars) do

factors & [MAKE-FACTOR(var, e)|factors]
if var is a hidden variable then
factors < SUM-OUT(var,factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

286

Example
P(B|j,m) < P(B,j,m)

P(B) P(E) P(A|B, E) P(jlA) P(m|A)

(B‘j’ m) X P(B’ j, m) marginal can be obtained from joint by Summing ou
= Z P(B,j,m,e,a) use Bayes’ net joint distribution expression
- ZP P(a|B, €)P(j]a) P(m]a) use x*(y+2) = xy + xz
— Z P(B Z P(a|B,e)P(jla)P(m|a) joining ona, and then summing out gives f,
= Z P f1 (]’ m\B e) use x*(y+z) =xy +xz
B) Z P(e)fi(j,m|B, e) joining on e, and then summing out gives f,
= P(B) fo(j,m| B)

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Example (cont’d)
P(B|j,m) o< P(B,j,m)

P(B) P(E) P(A|B, E) P(lA) P(m|A)
Choose A
P(A|B,E)
P(j|A) » P(j,m,A|B, E) - P(j,m|B,)
P(m|A)

P(B)

P(E)

P(j,m|B, E)

288

Example (cont’d)

P(B) P(E) P(j,m|B, E) O (&
Choose E °

P(E) » P(j,m, E|B) - P(j,m|B) (& ()
P(j,m|B, E)

P(B) P(j,m|B)

Finish with B

P(B) | .
oo W) PG W P(Blm)

289

Another Variable Elimination Example

Query: P(X3|Y1 =y1,Ys = y2, Y5 = y3)

Start by inserting evidence, which gives the following initial factors: Z
P(2),P(X1|Z), P(X2|Z), P(X35|2), P(y1|X1), P(y2|X2), P(ys| Xs)
Eliminate X1, this introduces the factor f1(y1|2) = >_, P(z1|Z2)P(y1|l71), (X4 X5 X3
and we are left with:
P(Z), P(X2|2), P(X3]|Z), P(y2| X2), P(y3| X3), f1(y1]12) b 13 bt
Eliminate Xj, this introduces the factor fo(y2|Z) = >, P(x2]|2)P(yz2|r2),
and we are left with:
P(Z),P(X5|Z), P(ys| Xs), f1(y1|2), f2(y2|Z) Computational complexity critically

Eliminate Z. this introduces the fact) =S PAP(X P p depends on the largest factor being
iminate Z, this introduces the factor f(y1,y2, X3) = 2. P(2) P(X32) f1(4112) f2(y2|Z), generated in this process. Size of factor

and we are left with:
P(ys|X3), f3(y1,y2, X3)

= number of entries in table. In
example above (assuming binary) all

No hidden variables left. Join the remaining factors to get: :
factors generated are of size 2 --- as

f4<yl7y27y37X3) — P(y3|X3) f3(y17y27X3)

Normalizing over X3 giVeS P(XB‘y17y27y3) — f4(ylay27y37X3>/ 2333 f4(y17 Y2, y37x3)

they all only have one variable (Z, Z,
and X3 respectively).

290

Variable Elimination Ordering

* For the query P(X,|y4,-...,¥,) work through the following two different orderings as done in previous
slide: Z, X4, ..., X,y and Xy, ..., X,.1, Z. What is the size of the maximum factor generated for each of the
orderings?

Z

Xl X2 Xn—l Xn
Yl }/?2 Y;L—l }/’n,

* Answer: 2" versus 2 (assuming binary)

* In general: the ordering can greatly affect efficiency

VE: Computational and Space Complexity

* The computational and space complexity of variable elimination is determined by
the largest factor

* The elimination ordering can greatly affect the size of the largest factor
e E.g., previous slide’s example 2" vs. 2

* Does there always exist an ordering that only results in small factors?
* No!

Worst Case Complexity?

* CSP:
(z1VaoV-x3)A(mx1VesVxg)A(xeV -z Ve)A(—x3VozgVxs))A (e VesVar) A(xaVaesVee) A(mxs Ve Va7)A(—xsVxeVT7)

P(X;=0)=P(X;=1)=0.5
Y] = X1 \/X2 V ﬂ-)(ZS

Ys = X5V X6 V X5

Y1,2 =Y AYs

Y7,8 =Y-AYs
Yiosa=Y12AY34
Ys678 =Ys56/N\Y7s

Z =Y1234NY5678

* |f we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution
* Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general 793

Variable Elimination: The basic ideas

* Move summations inwards as far as possible
* P(B|j,m)= a2.2,P(B) Ple) Pla| B,e) P(j|a) P(m]a)
= a P(B) 2. P(e) 2., P(a|B,e) P(j|a) P(m]a)

* Do the calculation from the inside out
* |.e., sum over o first, then sum over e

* Problem: P(a|B,e) isn’t a single number, it’s a bunch of different numbers
depending on the values of B and e

 Solution: use arrays of numbers (of various dimensions) with appropriate
operations on them; these are called factors

294

Sampling

Sampling

* Sampling is a lot like repeated * Why sample?
simulation : get samples from a
e Predicting the weather, basketball distribution you don’t know
games, getting a sample is

faster than computing the right
o answer (e.g. with variable
* Basic idea elimination)
* Draw N samples from a sampling
distribution S
* Compute an approximate posterior
probability

* Show this converges to the true
probability P

Sampling 2

e Sampling from given distribution

* Step 1: Get sample u from uniform
distribution over [0, 1) 0<u<0.6,—C=red
e E.g. random() in python

0.6 <u<0.7, = C = green
0.7<u<1,— C = blue

e Step 2: Convert this sample u into an

outcome for the given distribution by

having each tareet outcome * If random() returns u = 0.83, then our
g] &) sample is C = blue

associated with a sub-interval of [0,1) . Eg after sampling 8 times:

with sub-interval size equal to

probability of the outcome

Sampling in Bayes’ Nets
* Prior Sampling

* Rejection Sampling

* Likelihood Weighting

* Gibbs Sampling

Prior Sampling: Exam

nle

PC)
+C 0.5
-C 0.5

P(S|C)
+s | 0.1
+c | -s | 0.9
+s | 0.5
-c | -s |05
P(W|S, R)
+w | 0.99
+s +r -w | 0.01
+w | 0.90
-r -W 0.10
+w | 0.90
- +r -w | 0.10
+w | 0.01
-r -w | 0.99

P(R|C)

+C

+r

0.8

0.2

+r

0.2

0.8

Samples:

+C, -S, +I, +W

-C, +S, I, +W

299

Prior Sampling: Algorithm

* Fori=1,2, ..., nin topological order

= Sample x; from P(X; | Parents(X,))

= Return (x4, X,, ..., X,))

.l, n

Prior Sampling

* This process generates samples with probability:

T
Spg(x1...xn) = H P(x;|Parents(X;)) = P(x1...xn)
1=1
...i.e. the BN’s joint probability

Let the number of samples of an eventbe Npg(z1...7n)

e Then lim P(z1,...,zn) = |lim Npg(z1,...,2n)/N
N—o0 N —o0
= Sps(@1,...,2n)
= P(x1...20)

i.e., the sampling procedure is consistent

Example

 We'll get a bunch of samples from the BN:
* +C, -S, +I, +W
* +C, +S, +1, +W
°* —C,+S, +r, -W
* +C, -S, +I, +W
* —C, -S, -I,+W

 If we want to know P(W)
* We have counts <+w:4, -w:1>
* Normalize to get P(W) = <+w:0.8, -w:0.2>
This will get closer to the true distribution with more samples
Can estimate anything else, too
* P(C|+w)? P(C| +r, +w)?
* Can also use this to estimate expected value of f(X) - Monte Carlo Estimation
What about P(C | -r, -w)?

Rejection Sampling

e Let’s say we want P(C)
* Just tally counts of C as we go

* Let’s say we want P(C | +s)

* Same thing: tally C outcomes, but ignore (reject)
samples which don’t have S=+s

* This is called rejection sampling
* We can toss out samples early!

* |tis also consistent for conditional probabilities
(i.e., correct in the limit)

Rejection Sampling: Algorithm

Input: evidence instantiation

Fori=1,2, ..., nin topological order

= Sample x; from P(X; | Parents(X)))

= [If x; not consistent with evidence
* Reject: return — no sample is generated in this cycle

Return (x, Xy, ..., X,,)

Likelihood Weighting

* Problem with rejection sampling: * |dea: fix evidence variables and
* |If evidence is unlikely, rejects lots of sample the rest
samples * Problem: sample distribution not
e Consider P(Shape | blue) consistent!

* Solution: weight by probability of
evidence given parents

pyramid,—green pyramid, blue

pyramid—red ramid, blue
sphere, blue Shape >

sphere, Dblue
cube, blue
sphere, blue

AT\

oo

Likelihood Weighting: Example

P(C)
+C 0.5

-C

0.5

P(S|C)
+s | 0.1
+c | -s | 0.9
+s | 0.5
-c | -s |05
P(W|S, R)
+w | 0.99
+s +r -w | 0.01
+w | 0.90
-r -W 0.10
+w | 0.90
- +r -w | 0.10
+w | 0.01
-r -w | 0.99

Samples:

+C, +S, +I, +W
-C, +S, -I, +W

P(R|C)

+C

+r

0.8

0.2

+r

0.2

0.8

w=1.0)>

w=1.0x0.5x0.90

306

Likelihood Weighting: Algorithm

Input: evidence instantiation
w=1.0
fori=1,2, ..., nin topological order
= if X, is an evidence variable
= X, =observation x; for X;
» Setw =w * P(x, | Parents(X;))
* else
= Sample x; from P(X; | Parents(X;))

return (Xy, X,, ..., X,), W

307

Likelihood Weighting

* Sampling distributiclm if zsampled and e fixed evidence

Sws(z,e) = || P(z;|Parents(Z;))
i=1

* Now, samples have weights

w(z,e) = ﬁ P(e;|Parents(E;))
i=1

* Together, weighted sampling distribution is consistent
[m
Sws(z,€) - w(z,e) = HP(zAParents(zi)) HP(ez-|Parents(ei))

= P(z,e)

Likelihood Weighting

* Likelihood weighting is helpful * Likelihood weighting doesn’t solve all our

. . roblems
* We have taken evidence into account as we P

generate th? sample _ . , but not upstream ones (C isn’t more
* E.g. here, W’s value will get picked based on likely to get a value matching the evidence)

the evidence values of S, R « We would like to consider evidence when we
* More of our samples will reflect the state of sample every variable (leads to Gibbs
the world suggested by the evidenc : sampling)
ik, W

Gibbs Sampling: Example P(S | +r)

e Step 1: Fix evidence

* R=+r = Randomly

* Choose a non-evidence variable X
 Resample X from P(X | all other variables)*

Sample from P(S|+ ¢, —w, +r) Sample from P(C|+ s, —w, +7) Sample from P(W|+ s, +c, +r)

310

Gibbs Sampling

Keep track of a full instantiation x4, ..., x,
Start with an arbitrary instantiation consistent with the evidence
Sample one variable at a time, conditioned on all the rest, but keep evidence fixed

Keep repeating this for a long time

In the limit of repeating this infinitely many times the resulting samples come from the
correct distribution (i.e. conditioned on evidence)

Both upstream and downstream variables condition on evidence

* In contrast:
Likelihood weighting only conditions on upstream evidence, and hence weights obtained in
likelihood weighting can sometimes be very small

e Sum of weights over all samples is indicative of how many “effective” samples were obtained,
so we want high weight

Resampling of One Variable

e Sample from P(S | +c, +r, -w)
P(S, +c,+r,—w)
P(+4+c,+r, —w)

.. PSActr—w)

Y, P(s,+ec, 41, —w)

_ P(+¢)P(S|+c)P(+r| + c)P(—w|S, +r)

Y P(+¢)P(s] +) P(+r| +) P(—wls, +7)

P(4+c)P(S| 4+ ¢)P(+r| + c)P(—w|S, +1)

P(+c)P(+r|+c¢c) >, P(s|+ c)P(—w|s,+T)

_ P(S|+c)P(—w|S,+r)

>, P(s] + o) P(—wls, +7)

P(S| + ¢, +r,—w) =

* Many things cancel out — only CPTs with S remain!

* More generally: only CPTs that have resampled variable need to be considered,
and joined together

312

Bayes’ Net Sampling Summary

* Prior Sampling P(Q)) Rejectio Sampling P(Q]e)

Decision Netwa
tj‘

Decision Networks

Umbrella

Weather

315

Decision Networks 2

 MEU: choose the action which maximizes the expected utility given the evidence

« Can directly operationalize this with decision networks Umbrella

* Bayes nets with nodes for utility and actions

* Lets us calculate the expected utility for each action

* New node types: Weather

O e Chance nodes (just like BNs)

* Actions (rectangles, cannot have parents, act as observed evidence)

<> » Utility node (diamond, depends on action and chance nodes)

316

Decision Networks 3

e Action selection

Umbrella

* |[nstantiate all evidence

Set action node(s) each possible way

Calculate posterior for all parents of
utility node, given the evidence

Weather

Calculate expected utility for each
action

Choose maximizing action

Maximum Expected Utility

Umbrella = leave

U(leave) Z P(w)U (leave, w)

Umbrella

:O.7-100—|—O.3-O:7O

Umbrella = take

EU(take) Z P(w)U (take, w)

A W U(A,W)
—0.7-20+ 0.3 .70 = 35 W P(W) leave sun 100
sun 0.7 leave rain 0
rain 0.3 take sun 20
Optimal decision = leave .
take rain 70

MEU(¢) = max EU(a) = 70 318

Decisions as Outcome Trees

Umbrella

O

» Almost exactly like expectimax / MDPs
e What’ s changed?

319

Maximum Expected Utility

Umbrella = leave

EU(leave|bad) = Z P(w|bad)U (leave, w)

P(W) P(F|W)
P(W, F)

Yo P(w, F)

P(W|F) =

P(F|W)P(W)

Umbrella

Lo P(Flw)P(w)

Weather

\ 4

A U(AW)
leave 100
leave | rain 0
take 20
take rain 70

P(W |F=bad)

0.34

0.66

Maximum Expected Utility 2

Umbrella = leave

EU(leave|bad) = Z P(w|bad)U (leave, w)

=0.34-100+0.66 -0 = 34

Umbrella = take
EU(take|bad) = Z P(w|bad)U (take, w)
=0.34-20+0.66 - 70 = 53

Optimal decision = take

MEU(F = bad) = max EU(a|bad) = 53

Umbrella

Weather

A W U(AW)
leave | sun 100
leave | rain 0
take sun 20
take rain 70

P(W |F=bad)

sun

0.34

rain

0.66

\ 4
Forecast
=bad

Decisions as Outcome Trees

Umbrella

{b}

N\ lea Ve
Vol Q Vol
c’\)o (9//7 c,\> (9//7

orecas

322

Video of Demo Ghostbusters with Probability

Ghostbusters Decision Network

Demo: Ghostbusters with probability

Bust

S

)

\S

Gensor (2,1))

Value of Information

325

Value of Information

DO U
* |dea: compute value of acquiring evidence DrillLoc a2l &
* Can be done directly from decision network
b 0
* Example: buying oil drilling rights 0
* Two blocks A and B, exactly one has oil, worth k k
* You can drill in one location

* Prior probabilities 0.5 each, & mutually exclusive
 Drilling in either A or B has EU = k/2, MEU = k/2

« Question: what’ s the value of information of O?
* Value of knowing which of A or B has oil
* Value is expected gain in MEU from new info
 Survey may say “oilina” or “oilin b,” prob 0.5 each
* If we know OilLoc, MEU is k (either way)

* Gain in MEU from knowing QilLoc?
* VPI(OillLoc) = k/2
* Fair price of information: k/2

Value of Perfect Information

MEU with no evidence Umbrella

MEU(¢) = max EU(a) = 70 0
MEU if forecast is bad @

MEU(F = bad) = max EU(a|bad) = 53

MEU if forecast is good

MEU(F = good) = max EU(a|good) = 95 @

Forecast distribution

=N 0.59 - (95) + 0.41 - (53) — 70
77.8 —70=7.8

VPI(E'|e) = (Z P(e’e)MEU(e,e’)) — MEU(e)

(&

Value of Information

* Assume we have evidence E=e. Value if we act now: . {+e}
MEU(e) = maaxz P(sle) U(s,a)
5 P(s | +e)
« Assume we see thatE’" =e’. Value if we act then: U
AN /
MEU(e,e’) = maaxz P(sle,e’) U(s,a) tre, ve)
5 a
« BUTE’ isarandom variable whose value is
unknown, so we don’ t know what e’ will be P(s | +e, +€e’)

» Expected value if E’ is revealed and then we act:

MEU(e, E') =) P(e'le)MEU(e, ')

e
* Value of information: how much MEU goes up

by revealing E’ first then acting, over acting now:

VPI(E'|e) = MEU(e, E') — MEU(e)

328

Value of Information 2

{+e}
d
MEU(e, E") =) P(e'le)MEU(e,) P(s | +e) ,S, ,8'
e/ U

_ Zp(el‘e) mC?XZP(S\e, e’)U(s, a)

{+e, +e’}
a i
P(s | +e, +e’)
MEU(e) = mc?xz P(sle) U(s,a) U

= mgxz Z P(s,e'le)U(s,a)
= mcz}xz P(ele’) Z P(sle,e")U(s,a)

329

VPI| Properties

* Nonnegative
VE', e : VPI(E'le) > 0

* Nonadditive
(think of observing E; twice)

VPI(Ej, Ek\e) # VPI(E]'|€) —|— VPI(EM@)

* Order-independent
VPI(E;, Egle) = VPI(Ejle) + VPI(Eyle, E;)

— VPI(EMG) —|— VPI(Ej|€, Ek)

Quick VPI Questions

* The soup of the day is either clam chowder or split
pea, but you wouldn’ t order either one. What’ s
the value of knowing which it is?

* There are two kinds of plastic forks at a picnic.
One kind is slightly sturdier. What’ s the value of
knowing which?

* You’ re playing the lottery. The prize will be SO or
$100. You can play any number between 1 and
100 (chance of winning is 1%). What is the value
of knowing the winning number?

331

Value of Imperfect Information?

* No such thing

* Information corresponds to the observation
of a node in the decision network

 |f data is “noisy” that just means we don’t
observe the original variable, but another
variable which is a noisy version of the
original one

332

VPl Question

DrillLoc

VPI(OilLoc) ?

VPI(ScoutingReport) ?

VPI(Scout) ?

VPI(Scout | ScoutingReport) ?

Generally:

If Parents(U) || Z | CurrentEvidence
Then VPI(Z | CurrentEvidence) =0

