
Final Review
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3317/index.html

1
Part of slide credits: CMU AI & http://ai.berkeley.edu

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS3317/index.html

Search
Problems

2

Search Problems
• A search problem consists of:

• A state space

• For each state, a set
Actions(s) of successors/actions

• A successor function
• A transition model T(s,a)
• A step cost(reward) function c(s,a,s’)

• A start state and a goal test

• A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

{N, E}

3

State Space Graphs
• State space graph: A mathematical

representation of a search problem
• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

4

Search Trees

• A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states
• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

5

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

6

Tree Search

7

Searching with a Search Tree

• Search:
• Expand out potential plans (tree nodes)
• Maintain a fringe of partial plans under consideration
• Try to expand as few tree nodes as possible

8

General Tree Search

• Important ideas:
• Fringe
• Expansion
• Exploration strategy

• Main question: which fringe nodes to explore?
9

General Tree Search 2

10

function TREE_SEARCH(problem) returns a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier
loop do

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
for each resulting child from node

add child to the frontier

Depth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

11

Breadth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

12

Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + … + bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

13

Depth-First Search (DFS) Properties
• What nodes DFS expand?

• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space does the fringe take?
• Only has siblings on path to root, so O(bm)

• Is it complete?
• m could be infinite, so only if we prevent cycles

(more later)

• Is it optimal?
• No, it finds the “leftmost” solution, regardless of

depth or cost

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

14

Breadth-First Search (BFS) Properties
• What nodes does BFS expand?

• Processes all nodes above shallowest solution
• Let depth of shallowest solution be s
• Search takes time O(bs)

• How much space does the fringe take?
• Has roughly the last tier, so O(bs)

• Is it complete?
• s must be finite if a solution exists

• Is it optimal?
• Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

15

Iterative Deepening
• Idea: get DFS’s space advantage with BFS’s

time / shallow-solution advantages
• Run a DFS with depth limit 1. If no solution…
• Run a DFS with depth limit 2. If no solution…
• Run a DFS with depth limit 3. …..

• Isn’t that wastefully redundant?
• Generally most work happens in the lowest level

searched, so not so bad!

…
b

16

Finding a Least-Cost Path

• BFS finds the shortest path in terms of number of actions, but not the
least-cost path
• A similar algorithm would find the least-cost path

17

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2 How?

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

18

Uniform Cost Search 2

19

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
initialize the frontier as a priority queue using node’s path_cost as the priority
add initial state of problem to frontier with path_cost = 0
loop do

if the frontier is empty then
return failure

choose a node (with minimal path_cost) and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
for each resulting child from node

add child to the frontier with path_cost = path_cost(node) + cost(node, child)

S

A

B

C

D

G

1

4

2
4

1

3

…

Uniform Cost Search (UCS) Properties
• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!
• If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
• Takes time O(bC*/e) (exponential in effective depth)

• How much space does the fringe take?
• Has roughly the last tier, so O(bC*/e)

• Is it complete?
• Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

• Is it optimal?
• Yes! (Proof next via A*)

b

C*/e “tiers”
c £ 3

c £ 2

c £ 1

20

The One Queue
• All these search algorithms are the

same except for fringe strategies
• Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)

• Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

• Can even code one implementation that
takes a variable queuing object

21

Informed Search

22

Search Heuristics

• A heuristic is:
• A function that estimates how close a state is to a goal
• Designed for a particular search problem
• Pathing?
• Examples: Manhattan distance, Euclidean distance for pathing

23

10

5
11.2

Greedy Search

• Expand the node that seems closest to the goal

• Is it optimal?
• No. Resulting path to Bucharest is not the shortest!
• Why?
• Heuristics might be wrong 24

A* Search: Combining UCS and Greedy
• Uniform-cost orders by path cost, or backward cost 𝑔(𝑛)
• Greedy orders by goal proximity, or forward cost ℎ(𝑛)

• A* Search orders by the sum: 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

25

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal

26

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S 0 3 3

g h +

S->A 2 2 4

S->B 2 1 3

S->B->G 5 0 5

S->A->G 4 0 4

A* Search

27

function A-STAR-SEARCH(problem) returns a solution, or failure
initialize the frontier as a priority queue using f(n)=g(n)+h(n) as the priority
add initial state of problem to frontier with priority f(S)=0+h(S)
loop do

if the frontier is empty then
return failure

choose a node and remove it from the frontier
if the node contains a goal state then

return the corresponding solution
for each resulting child from node

add child to the frontier with f(n)=g(n)+h(n)

28

Is A* Optimal?

• What went wrong?
• Actual bad goal cost < estimated good goal cost
• We need estimates to be less than actual costs!

29

A

GS

1 3
h = 6

h = 0

5

h = 7

g h +

S 0 7 7
S->A 1 6 7

S->G 5 0 5

Admissible Heuristics

• A heuristic ℎ is admissible (optimistic) if
0 ≤ ℎ 𝑛 ≤ ℎ∗ 𝑛

where ℎ∗(𝑛) is the true cost to a nearest goal

• Examples:

• Coming up with admissible heuristics is most of what’s involved in
using A* in practice

30

15 11.5
0.0

Optimality of A* Tree Search

• Assume:
• A is an optimal goal node
• B is a suboptimal goal node
• h is admissible

• Claim:
• A will exit the fringe before B

31

…

Optimality of A* Tree Search: Blocking

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

32

Definition of f-cost
Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search: Blocking 2

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

33

B is suboptimal
h = 0 at a goal

…

Optimality of A* Tree Search: Blocking 3

• Proof:
• Imagine B is on the fringe
• Some ancestor n of A is on the fringe,

too (maybe A!)
• Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

• All ancestors of A expand before B
• A expands before B
• A* search is optimal

34

…

Comparison

35

Greedy Uniform Cost A*

Creating Heuristics

• Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

• Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

• Inadmissible heuristics are often useful too
36

15
366

Example: 8 Puzzle

• What are the states?
• How many states?
• What are the actions?
• How many successors from the start state?
• What should the costs be? 37

Start State Goal State
Actions

Admissible
heuristics?

Example: 8 Puzzle - 2

• Heuristic: Number of tiles misplaced
• Why is it admissible?
• h(start) =
• This is a relaxed-problem heuristic

38

8

Average nodes expanded
when the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

Example: 8 Puzzle - 3

• What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring
other tiles?

• Total Manhattan distance

• Why is it admissible?

• h(start) =
39

3 + 1 + 2 + … = 18

Average nodes expanded
when the optimal path has…
…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73

Start State Goal State

Example: 8 Puzzle - 4

• How about using the actual cost as a heuristic?
• Would it be admissible?
• Would we save on nodes expanded?
• What’s wrong with it?

• With A*: a trade-off between quality of estimate and work per node
• As heuristics get closer to the true cost, you will expand fewer nodes but

usually do more work per node to compute the heuristic itself

40

Constraint Satisfaction Problems

41

Constraint Satisfaction Problems

42

N variables

x1

x2

domain D
constraints

states goal test successor function
partial assignment complete; satisfies constraints assign an unassigned variable

What is Search For?

• Assumptions about the world: a single agent, deterministic actions, fully
observed state, discrete state space

• Planning: sequences of actions
• The path to the goal is the important thing
• Paths have various costs, depths
• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path
• All paths at the same depth (for some formulations)
• CSPs are specialized for identification problems

43

Constraint Satisfaction Problems

• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs):
• A special subset of search problems
• State is defined by variables 𝑋! with values

from a domain D (sometimes D depends on i)
• Goal test is a set of constraints specifying

allowable combinations of values for subsets
of variables

• Allows useful general-purpose algorithms
with more power than standard search
algorithms 44

Constraint Graphs

• Binary CSP: each constraint relates (at most)
two variables

• Binary constraint graph: nodes are variables,
arcs show constraints

• General-purpose CSP algorithms use the
graph structure to speed up search. E.g.,
Tasmania is an independent subproblem!

45

Standard Search Formulation

• Standard search formulation of CSPs

• States defined by the values assigned so
far (partial assignments)

• Initial state: the empty assignment, {}
• Successor function: assign a value to an

unassigned variable
• Goal test: the current assignment is

complete and satisfies all constraints

• We’ll start with the straightforward,
naïve approach, then improve it

46

→Can be any unassigned variable

Search Methods: DFS

• At each node, assign a value from the
domain to the variable
• Check feasibility (constraints) when

the assignment is complete

• What problems does the naïve search
have?

47[Demo: coloring -- dfs]

Backtracking Search

• Backtracking search is the basic uninformed algorithm for
solving CSPs

• Backtracking search = DFS + two improvements

• Idea 1: One variable at a time
• Variable assignments are commutative, so fix ordering -> better

branching factor!
• I.e., [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assignments to a single variable at each step

• Idea 2: Check constraints as you go
• I.e. consider only values which do not conflict previous assignments
• Might have to do some computation to check the constraints
• “Incremental goal test”

• Can solve N-queens for 𝑁 ≈ 25
48

Example

49[Demo: coloring -- backtracking]

function BACKTRACKING_SEARCH(csp) returns a solution, or failure
return RECURSIVE_BACKTRACKING({}, csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure
if assignment is complete then

return assignment
var ⟵ SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then
add {var=value} to assignment
result ⟵ RECURSIVE_BACKTRACKING(assignment, csp)
if result ≠ failure then

return result
remove {var=value} from assignment

return failure

function BACKTRACKING_SEARCH(csp) returns a solution, or failure
return RECURSIVE_BACKTRACKING({}, csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure
if assignment is complete then

return assignment
var ⟵ SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then
add {var=value} to assignment
result ⟵ RECURSIVE_BACKTRACKING(assignment, csp)
if result ≠ failure then

return result
remove {var=value} from assignment

return failure

No need to check consistency for a
complete assignment

Checks consistency at each assignment

What are choice
points?

Backtracking = DFS + variable-ordering +
fail-on-violation

Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?
• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

52

Filtering: Forward Checking
• Filtering: Keep track of domains for unassigned variables and cross off bad

options
• Forward checking: Cross off values that violate a constraint when added to

the existing assignment

53

WA
SA

NT Q
NSW
V

[Demo: coloring -- forward checking]

failure is detected if some variables have no values remaining

Filtering: Forward Checking 2
• Filtering: Keep track of domains for unassigned variables and cross off bad

options
• Forward checking: Cross off values that violate a constraint when added to

the existing assignment

54

WA
SA

NT Q
NSW
V

[Demo: coloring -- forward checking]

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints

Filtering: Forward Checking 3
• Filtering: Keep track of domains for unassigned variables and cross off bad

options
• Forward checking: Cross off values that violate a constraint when added to

the existing assignment

55

WA
SA

NT Q
NSW
V

[Demo: coloring -- forward checking]

Filtering: Forward Checking 4
• Filtering: Keep track of domains for unassigned variables and cross off bad

options
• Forward checking: Cross off values that violate a constraint when added to

the existing assignment

56

WA
SA

NT Q
NSW
V

[Demo: coloring -- forward checking]

FAIL – variable with
no possible values

Filtering: Constraint Propagation

• Forward checking propagates information from assigned to unassigned
variables, but doesn't provide early detection for all failures:

• NT and SA cannot both be blue!
• Why didn’t we detect this yet?
• Constraint propagation: reason from constraint to constraint

57

WA SA

NT Q

NSW

V

Consistency of A Single Arc

• An arc X ® Y is consistent iff for every x in the tail there is some y in the
head which could be assigned without violating a constraint

Forward checking?
A special case
Enforcing consistency of arcs pointing to each new assignment 58

Delete from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment
• What’s the downside of enforcing arc consistency?

59

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of Entire CSP 2

• A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-
consistency, repeating the cycle until no domains change for a whole
cycle
• AC-3 (Arc Consistency Algorithm #3):

• A more efficient algorithm ignoring constraints that have not been modified
since they were last analyzed

60

WA
SA

NT
Q

NSW

V

T

function AC-3(csp) returns the CSP, possibly with reduced domains
initialize a queue of all the arcs in csp
while queue is not empty do

(𝑋!, 𝑋") ⟵ REMOVE_FIRST(queue)

if REMOVE_INCONSISTENT_VALUES(𝑋!, 𝑋") then
for each 𝑋# in NEIGHBORS[𝑋!] do

add (𝑋#, 𝑋!) to queue

function REMOVE_INCONSISTENT_VALUES(𝑋!, 𝑋") returns true iff succeeds
removed ⟵ false
for each x in DOMAIN[𝑋!] do

if no value y in DOMAIN[𝑋"] allows (x,y) to satisfy the constraint 𝑋! ⟷ 𝑋" then
delete x from DOMAIN[𝑋!]; removed ⟵ true

return removed

function AC-3(csp) returns the CSP, possibly with reduced domains
initialize a queue of all the arcs in csp
while queue is not empty do

(𝑋!, 𝑋") ⟵ REMOVE_FIRST(queue)

if REMOVE_INCONSISTENT_VALUES(𝑋!, 𝑋") then
for each 𝑋# in NEIGHBORS[𝑋!] do

add (𝑋#, 𝑋!) to queue

function REMOVE_INCONSISTENT_VALUES(𝑋!, 𝑋") returns true iff succeeds
removed ⟵ false
for each x in DOMAIN[𝑋!] do

if no value y in DOMAIN[𝑋"] allows (x,y) to satisfy the constraint 𝑋! ⟷ 𝑋" then
delete x from DOMAIN[𝑋!]; removed ⟵ true

return removed

Constraint Propagation!

function AC-3(csp) returns the CSP, possibly with reduced domains
initialize a queue of all the arcs in csp
while queue is not empty do

(𝑋!, 𝑋") ⟵ REMOVE_FIRST(queue)

if REMOVE_INCONSISTENT_VALUES(𝑋!, 𝑋") then
for each 𝑋# in NEIGHBORS[𝑋!] do

add (𝑋#, 𝑋!) to queue

function REMOVE_INCONSISTENT_VALUES(𝑋!, 𝑋") returns true iff succeeds
removed ⟵ false
for each x in DOMAIN[𝑋!] do

if no value y in DOMAIN[𝑋"] allows (x,y) to satisfy the constraint 𝑋! ⟷ 𝑋" then
delete x from DOMAIN[𝑋!]; removed ⟵ true

return removed … but detecting all possible future
problems is NP-hard – why?

• An arc is added after a removal of
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values
• Total times of removal: 𝑂 𝑛𝑑
• After a removal, ≤ 𝑛 arcs added
• Total times of adding arcs: 𝑂(𝑛$𝑑)

• Check arc consistency per arc: 𝑂(𝑑$)
• Complexity: 𝑂(𝑛$𝑑%)

• Can be improved to 𝑂(𝑛$𝑑$)

Example of AC-3

64

Queue:
SA->WA
NT->WA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

64

Example of AC-3 2

65

Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

WA
SA

NT
Q

NSW

V

T

Remember: Delete from the tail!

Example of AC-3 3

66

Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

WA
SA

NT
Q

NSW

V

T

Example of AC-3 4

67

WA
SA

NT
Q

NSW

V

T

Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Example of AC-3 5

68

WA
SA

NT
Q

NSW

V

T

Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Limitations of Arc Consistency

• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not know it)

• Arc consistency still runs inside a
backtracking search!
• And will be called many times

69
[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]

function BACKTRACKING_SEARCH(csp) returns a solution, or failure
return RECURSIVE_BACKTRACKING({}, csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure
if assignment is complete then

return assignment
var ⟵ SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then
add {var=value} to assignment
result ⟵ RECURSIVE_BACKTRACKING(assignment, csp)
if result ≠ failure, then

return result
remove {var=value} from assignment

return failure

AC-3(𝑐𝑠𝑝)

Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?
• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

71

Ordering: Minimum Remaining Values

• Variable Ordering: Minimum remaining values (MRV):
• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?
• Also called “most constrained variable”
• “Fail-fast” ordering

72

Ordering: Least Constraining Value

• Value Ordering: Least Constraining Value
• Given a choice of variable, choose the least constraining

value
• I.e., the one that rules out the fewest values in the

remaining variables
• Note that it may take some computation to determine

this! (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes
1000 queens feasible

73

Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?
• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

74

Problem Structure

• For general CSPs, worst-case complexity with backtracking
algorithm is O(dn)

• When the problem has special structure, we can often solve
the problem more efficiently

• Special Structure 1: Independent subproblems
• Example: Tasmania and mainland do not interact
• Connected components of constraint graph
• Suppose a graph of 𝑛 variables can be broken into

subproblems, each of only 𝑐 variables:
• Worst-case complexity is O((n/c)(dc)), linear in n
• E.g., n = 80, d = 2, c =20
• 280 = 4 billion years at 10 million nodes/sec
• (4)(220) = 0.4 seconds at 10 million nodes/sec

75

Tree-Structured CSPs

• Theorem: if the constraint graph has no loops, the CSP can be solved in O(nd2)
time
• Compare to general CSPs, where worst-case time is O(dn)
• How?

• This property also applies to probabilistic reasoning (later): an example of the
relation between syntactic restrictions and the complexity of reasoning

76

Tree-Structured CSPs 2

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children

77

Tree-Structured CSPs 3

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

78

Tree-Structured CSPs 4

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)
• Assign forward: For 𝑖 = 1: 𝑛, assign 𝑋𝑖 consistently with Parent(𝑋𝑖)

• Runtime: 𝑂(𝑛𝑑2) (why?)
• Can always find a solution when there is one (why?) 79

Remove backward 𝑂(𝑛𝑑$) : 𝑂 𝑑$ per arc and 𝑂(𝑛) arcs
Assign forward 𝑂(𝑛𝑑): 𝑂(𝑑) per node and 𝑂(𝑛) nodes

Tree-Structured CSPs 5

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once
• a. Parent(𝑋!) → 𝑋! was made consistent when 𝑋! was visited

• b. After that, Parent(𝑋!) → 𝑋! kept consistent until the end of the backward pass

80

Tree-Structured CSPs 6

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once
• a. Parent(𝑋!) → 𝑋! was made consistent when 𝑋! was visited

• When 𝑋" was visited, we enforced arc consistency of Parent(𝑋") → 𝑋" by reducing the domain
of Parent(𝑋"). By definition, for every value in the reduced domain of Parent(𝑋"), there was
some 𝑥 in the domain of 𝑋" which could be assigned without violating the constraint involving
Parent(𝑋") and 𝑋"

• b. After that, Parent(𝑋!) → 𝑋! kept consistent until the end of the backward pass81

Tree-Structured CSPs 7

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once.
• a. Parent(𝑋!) → 𝑋! was made consistent when 𝑋! was visited

• b. After that, Parent(𝑋!) → 𝑋! kept consistent until the end of the backward pass
• Domain of 𝑋" would not have been reduced after 𝑋" is visited because 𝑋"’s children were

visited before 𝑋". Domain of Parent(𝑋") could have been reduced further. Arc consistency
would still hold by definition.

82

Tree-Structured CSPs 8

• Assign forward: For 𝑖=1:𝑛, assign 𝑋' consistently with Parent(𝑋')

• Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
• Proof: Follow the backtracking algorithm (on the reduced domains and with the same

ordering). Induction on position Suppose we have successfully reached node 𝑋!. In the
current step, the potential failure can only be caused by the constraint between 𝑋! and
Parent(𝑋!), since all other variables that are in a same constraint of 𝑋! have not
assigned a value yet. Due to the arc consistency of Parent(𝑋!) → 𝑋!, there exists a
value 𝑥 in the domain of 𝑋! that does not violate the constraint. So we can successfully
assign value to 𝑋! and go to the next node. By induction, we can successfully assign a
value to a variable in each step of the algorithm. A solution is found in the end. 83

Local Search

84

Local Search

• Can be applied to identification problems (e.g., CSPs), as well as some
planning and optimization problems

• Typically use a complete-state formulation
• e.g., all variables assigned in a CSP (may not satisfy all the constraints)

• Different “complete”:
• An assignment is complete means that all variables are assigned a value
• An algorithm is complete means that it will output a solution if there exists

one
85

Iterative Algorithms for CSPs

• To apply to CSPs:
• Take an assignment with unsatisfied constraints
• Operators reassign variable values
• No fringe! Live on the edge.

• Algorithm: While not solved,
• Variable selection: randomly select any

conflicted variable
• Value selection: min-conflicts heuristic

• Choose a value that violates the fewest constraints
• v.s., hill climb with h(x) = total number of violated

constraints (break tie randomly)

86

Example: 4-Queens

• States: 4 queens in 4 columns (44 = 256 states)
• Operators: move queen in column
• Goal test: no attacks
• Evaluation: h(n) = number of attacks

87

Performance of Min-Conflicts

• Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)!
• The same appears to be true for any randomly-generated CSP except

in a narrow range of the ratio

88

Local Search vs Tree Search

• Tree search keeps unexplored alternatives on the fringe (ensures
completeness)
• Local search: improve a single option until you can’t make it better

(no fringe!)
• New successor function: local changes

• Generally much faster and more memory efficient (but incomplete
and suboptimal)

89

Example

• Local search may get stuck in a local optima

90

ℎ = 1

Hill Climbing

• Simple, general idea:
• Start wherever
• Repeat: move to the best neighboring state
• If no for current, quit

• What’s bad about this approach?

• What’s good about it?

91

Complete?

Optimal?

No!

No!

Hill Climbing Diagram

92

In identification problems, could be a function measuring how close you are to a
valid solution, e.g., −1× #conflicts in n-Queens/CSP

What’s the difference between
shoulder and flat local maximum
(both are plateau)?

Quiz

• Starting from X, where do you end up ?
• Starting from Y, where do you end up ?
• Starting from Z, where do you end up ?

93

Hill Climbing (Greedy Local Search)

94

How to apply Hill Climbing to 𝑛-Queens? How is it different from Iterative Improvement?
Define a state as a board with 𝑛 queens on it, one in each column
Define a successor (neighbor) of a state as one that is generated by moving a
single queen to another square in the same column

Hill Climbing (Greedy Local Search) 2

95

What if there is a tie?
Typically break ties randomly

What if we do not stop here?

• In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
• Takes 4 steps on average when it succeeds, and 3 steps when it fails

• When allow for ≤100 consecutive sideway moves, solves 94% of problem instances
• Takes 21 steps on average when it succeeds, and 64 steps when it fails

Local Search: Summary

• Maintain a constant number of current nodes or states, and move to
“neighbors” or generate “offsprings” in each iteration

• Do not maintain a search tree or multiple paths
• Typically do not retain the path to the node

• Advantages
• Use little memory
• Can potentially solve large-scale problems or get a reasonable (suboptimal or

almost feasible) solution

96

Boolean Satisfiability Problem

97

Boolean Constraint Propagation (BCP)

• Unit clause: A clause is unit under a partial assignment when that
assignment makes every literal in the clause unsatisfied but leaves a
single literal undecided
• Example: f = (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x3 ∨ x4), guess x1 and x2 are true

98

Davis-Putnam-Logemann-Loveland (DPLL)
Algorithm
• A SAT solver: recursive backtracking + BCP

• DPLL:
• Run BCP on the formula
• If the formula evaluates to True, return True
• If the formula evaluates to False, return False
• If the formula is still Undecided:

• Choose the next unassigned variable
• Return (DPLL with that variable True) || (DPLL with that variable False)

• Demo
99

Shortcomings of DPLL

• DPLL:
• Run BCP on the formula
• If the formula evaluates to True, return True
• If the formula evaluates to False, return False
• If the formula is still Undecided:

• Choose the next unassigned variable
• Return (DPLL with that variable True) || (DPLL with that variable False)

100

No learning: throws away all the
work performed to conclude that the
current partial assignment (PA) is
bad. Revisits bad PAs that lead to
conflict due to the same root cause

Naive decisions: picks an arbitrary
variable to branch on. Fails to
consider the state of the search to
make heuristically better decisions

Chronological backtracking: backtracks
one level, even if it can be deduced
that the current partial assignment
became doomed at a lower level

Conflict Driven Clause Learning (CDCL)

• CDCL improves on all three aspects!

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 101

Learning: F augmented with a
conflict clause that summarizes
the root cause of the conflict

Non-chronological backtracking:
backtracks b levels, based on the
cause of the conflict

Decision heuristics: choose the
next literal to add to the current
partial assignment based on the
state of the search

CDCL by example

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 102

CDCL by example 2

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 103

CDCL by example 3

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 104

CDCL by example 4

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 105

CDCL by example 5

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 106

CDCL by example 6

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 107

CDCL by example 7

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 108

CDCL by example 8

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 109

CDCL by example 9

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 110

CDCL by example 10

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 111

CDCL by example 11

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 112

CDCL by example 12

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 113(1,-x1 v -x4)

CDCL by example 13

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 114(1,-x1 v -x4)

CDCL by example 14

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 115(1,-x1 v -x4)

CDCL by example 14

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true 116(1,-x1 v -x4)

Conflict clause is unit
after backtracking

Implication graph

• An implication graph G = (V, E) is a
DAG that records the history of
decisions and the resulting deductions
derived with BCP

• v ∈ V is a literal (or κ) and the decision
level at which it entered the current
partial assignment (PA)

• ⟨v, w⟩ ∈ E iff v ≠ w, ¬v ∈ antecedent(w),
and ⟨v, w⟩ is labeled with antecedent(w)

• A unit clause c is an antecedent of its
sole unassigned literal

117

Decision literal

Implied literal

Conflict

Quiz a

• What clauses gave rise to this implication graph?
• c1 : ¬x1 ⋁ x2
• c2 : ¬x1 ⋁ x3 ⋁ x5
• c3 : ¬x2 ⋁ x4
• c4 : ¬x3 ⋁ ¬x4

118

Quiz b

• What clauses gave rise to this implication graph?
• c1 : ¬x1 ⋁ x2
• c2 : ¬x1 ⋁ x3 ⋁ x5
• c3 : ¬x2 ⋁ x4
• c4 : ¬x3 ⋁ ¬x4

119

Quiz b-2

• What clauses gave rise to this implication graph?
• c1 : ¬x1 ⋁ x2
• c2 : ¬x1 ⋁ x3 ⋁ x5
• c3 : ¬x2 ⋁ x4
• c4 : ¬x3 ⋁ ¬x4
• c5: ¬x5

120

Assignments at ground
(0) level are implied by
unary clauses

How to learn a conflict clause?

121

• A conflict clause is implied by
F and it blocks PAs that lead to
the current conflict

• Every cut that separates
sources from the sink defines
a valid conflict clause

¬x1 V x7 V ¬x8 ¬x1 V ¬x4

Unique implication points (UIPs)

122

¬x1 V ¬x4

• A UIP is any node in the
implication graph other than the
conflict that is on all paths from
the current decision literal (lit@d)
to the conflict (κ@d)

• A first UIP is the UIP that is closest
to the conflict

First UIPUIP

Cut after the first unique
implication point to get the
shortest conflict clause

ANALYZECONFLICT: Computing the conflict
clause
• ANALYZECONFLICT()

• d ← level(conflict)
• if d = 0 then return -1
• c ← antecedent(conflict)
• repeat

• t ← lastAssignedLitAtLevel(c, d)
• v ← varOfLit(t)
• ante ← antecedent(t)
• c ← resolve(ante, c, v)

• until oneLitAtLevel(c, d)
• b ←…
• return ⟨b, c⟩

123

¬x1 V ¬x4

Example:
• c = c2, t = x2, v = x2, ante = c1
• c = ¬x1 ⋁ x3 ⋁ ¬x4, t = x3, v =

x3, ante = c3
• c = ¬x1 ⋁ ¬x4, done!Resolution is a basic operation in the

propositional logic. To satisfy both 𝐴 ∨ 𝐵
and ¬𝐵 ∨ 𝐶, we must satisfy 𝐴 ∨ 𝐶

ANALYZECONFLICT: Computing the conflict
clause 2
• ANALYZECONFLICT()

• d ← level(conflict)
• if d = 0 then return -1
• c ← antecedent(conflict)
• repeat

• t ← lastAssignedLitAtLevel(c, d)
• v ← varOfLit(t)
• ante ← antecedent(t)
• c ← resolve(ante, c, v)

• until oneLitAtLevel(c, d)
• b ← assertingLevel(c)
• return ⟨b, c⟩

124

¬x1 V ¬x4

Second highest decision level for
any literal in c, unless c is unary. In
that case, its asserting level is zero

By construction, c is unit at b
(since it has only one literal at
the current level d)

Decision heuristics

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true

125

Dynamic Largest Individual Sum (DLIS)
• Choose the literal that satisfies the most

unresolved clauses
• Let cnt(𝑙) = number of occurrences of

literal 𝑙 in unsatisfied clauses
• Set the 𝑙 with highest cnt(𝑙)

• Simple and intuitive
• But expensive:

• complexity of making a decision
proportional to the number of clauses

Decision heuristics 2

• CDCL(F):
• A ← {}
• if BCP(F, A) = conflict then return false
• level ← 0
• while hasUnassignedVars(F)

• level ← level + 1
• A ← A ∪ { DECIDE(F, A) }
• while BCP(F, A) = conflict

• ⟨b, c⟩ ← ANALYZECONFLICT()
• F ← F ∪ {c}
• if b < 0 then return false

else BACKTRACK(F, A, b)
level ← b

• return true

126

Variable State Independent Decaying Sum (VSIDS)
• Count the number of all clauses in which a literal

appears, and periodically divide all scores by a
constant (e.g., 2)
• For each literal 𝑙, maintain a VSIDS score
• Initially: set to cnt(𝑙)
• Increment score by 1 each time it appears in an

added (conflict) clause
• Divide all scores by a constant (say 2) periodically

(say every N backtracks)
• Variables involved in more recent conflicts get higher

scores
• Constant decision time when literals kept in a sorted

list

Adversarial Search
Cost -> Utility!

127

“Standard” Games

• Standard games are deterministic, observable,
two-player, turn-taking, zero-sum
• Game formulation:

• States: S (start at s0)
• Players: P={1...N} (usually take turns)
• Actions: A (may depend on player / state)
• Transition Function: SxA ® S
• Terminal Test: S ® {t,f}
• Terminal Utilities: SxP ® R

• Solution for a player is a policy: S ® A
128

Single-Agent Trees: Value of a State

129

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best achievable

outcome (utility)
from that state

Adversarial Game Trees: Minimax Values

130

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Minimax Search

• Deterministic, zero-sum games:
• Tic-tac-toe, chess, checkers
• One player maximizes result
• The other minimizes result

• Minimax search:
• A state-space search tree
• Players alternate turns
• Compute each node’s minimax value: the best

achievable utility against a rational (optimal)
adversary

131

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Implementation (Dispatch)

132

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Example

• Actions?

133

12 8 5 23 2 144 6

3 2 2

3

Pseudocode for Minimax Search

134

𝑉 𝑠 = max
(

𝑉 𝑠′ ,

where 𝑠) = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

<𝑎 = argmax
(

𝑉 𝑠′ ,

where 𝑠) = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Quiz

• Minimax search belongs to which class?

A) BFS
B) DFS
C) UCS
D) A*

135

Minimax Efficiency

• How efficient is minimax?
• Just like (exhaustive) DFS
• Time: O(bm)
• Space: O(bm)

• Example: For chess, b » 35, m » 100
• Exact solution is completely infeasible
• But, do we need to explore the whole tree?
• Humans can’t do this either, so how do we play chess?
• Bounded rationality – Herbert Simon

136

Resource Limits: Game Tree Pruning

137

12 8 5 23 2 14

3 <=2 2

3

The order of generation matters: more pruning
is possible if good moves come first

Game Tree Pruning: Alpha-Beta Pruning

• General configuration (MIN version)
• We’re computing the MIN-VALUE at some node n

• We’re looping over n’s children
• n’s estimate of the childrens’ min is dropping

• Who cares about n’s value? MAX
• Let a be the best value that MAX can get at any choice

point along the current path from the root

• If n becomes worse than a, MAX will avoid it, so we can
stop considering n’s other children (it’s already bad
enough that it won’t be played)

• MAX version is symmetric 138

MAX

MIN

MAX

MIN

a

n

Alpha-Beta Implementation

139

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

Quiz

140

Which branches are pruned?
(Left to right traversal)
(Select all that apply)

Quiz 2

141

Which branches are pruned?
(Left to right traversal)
A) e, l
B) g, l
C) g, k, l
D) g, n

Quiz 2 - 1

142

10

10

>=100 2

<=2

Alpha-Beta Pruning Properties

• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
• Important: children of the root may have the wrong value
• So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
• Time complexity drops to O(bm/2)
• Doubles solvable depth!
• Chess: 1M nodes/move => depth=8, respectable
• Full search of complicated games, is still hopeless…

• This is a simple example of metareasoning (computing about what to compute) 143

10 10 0

max

min

Depth-limited search

• Problem: In realistic games, cannot search to leaves!

• Solution: Depth-limited search
• Instead, search only to a limited depth in the tree
• Replace terminal utilities with an evaluation function for non-

terminal positions

• Example:
• Suppose we have 100 seconds, can explore 10K nodes / sec
• So can check 1M nodes per move
• For chess, 𝑏 ≈ 35 so reaches about depth 4 – not so good
• a-b reaches about depth 8 – decent chess program

• Guarantee of optimal play is gone
• More plies makes a BIG difference
• Use iterative deepening for an anytime algorithm

144

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Expectimax Search

• Why wouldn’t we know what the result of an action will be?
• Explicit randomness: rolling dice
• Unpredictable opponents: the ghosts respond randomly
• Unpredictable humans: humans are not perfect
• Actions can fail: when moving a robot, wheels might slip

• Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax)
outcomes

• Expectimax search: compute the average score under optimal play
• Max nodes as in minimax search
• Chance nodes are like min nodes but the outcome is uncertain
• Calculate their expected utilities
• I.e. take weighted average (expectation) of children

• Later, we’ll learn how to formalize the underlying uncertain-result problems as Markov
Decision Processes

145
[Demo: min vs exp (L7D1,2)]

10 4 5 7

max

chance

10 10 9 100

Expectimax Pseudocode

146

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Expectimax Pseudocode 3

• function value(state)
• if state.is_leaf
• return state.value

• if state.player is MAX
• return max a in state.actions value(state.result(a))

• if state.player is MIN
• return min a in state.actions value(state.result(a))

• if state.player is CHANCE
• return sum s in state.next_states P(s) * value(s)

147

Example

148

12 9 6 03 2 154 6

Quiz

149

Expectimax tree search:
Which action do we
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4
1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

Quiz 2

150

Expectimax tree search:
Which action do we
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4
1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

4+3=73+2+2=7 4+4=8

8, Right

Expectimax: Depth-Limited

151

…

…

492 362 …

400 300
Estimate of true

expectimax value
(which would

require a lot of
work to compute)

Quiz: Informed Probabilities

152

• Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

• Question: What tree search should you use?

0.1 0.9

• Answer: Expectimax!
• To figure out EACH chance node’s probabilities,

you have to run a simulation of your opponent
• This kind of thing gets very slow very quickly
• Even worse if you have to simulate your

opponent simulating you…
• … except for minimax and maximax, which

have the nice property that it all collapses into
one game tree

This is basically how you would model a human, except for their utility: their utility might be the
same as yours (i.e. you try to help them, but they are depth 2 and noisy), or they might have a
slightly different utility (like another person navigating in the office)

Dangerous Pessimism/Optimism

153

Assuming chance when the world is adversarialAssuming the worst case when it’s not likely

Assumptions vs. Reality

154

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

MEU Principle

• Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
• Given any preferences satisfying these constraints, there exists a real-valued

function U such that:

• i.e. values assigned by U preserve preferences of both prizes and lotteries!

• Maximum expected utility (MEU) principle:
• Choose the action that maximizes expected utility
• Note: an agent can be entirely rational (consistent with MEU) without ever representing or

manipulating utilities and probabilities
• E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

155

Markov Decision Processes

156

Markov Decision Processes

• An MDP is defined by:
• A set of states s Î S
• A set of actions a Î A
• A transition function T(s, a, s’)

• Probability that a from s leads to s’, i.e., P(s’| s, a)
• Also called the model or the dynamics

• A reward function R(s, a, s’)
• Sometimes just R(s) or R(s’)

• A start state
• Maybe a terminal state

• MDPs are non-deterministic search problems
• One way to solve them is with expectimax search
• We’ll have a new tool soon

157
[Demo – gridworld manual intro (L8D1)]

What is Markov about MDPs?

• “Markov” generally means that given the present state, the
future and the past are independent

• For Markov decision processes, “Markov” means action
outcomes depend only on the current state

• This is just like search, where the successor function could only
depend on the current state (not the history)

158

Andrey Markov
(1856-1922)

Policies

• In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

• For MDPs, we want an optimal
policy p*: S → A

• A policy p gives an action for each state
• An optimal policy is one that maximizes

expected utility if followed
• An explicit policy defines a reflex agent

159

Optimal policy when R(s, a, s’) = -0.03 for
all non-terminals s

Optimal Policies

160
R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

MDP Search Trees

• Each MDP state projects an expectimax-like search tree

161

a

s

sʼ

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,sʼ

s is a state

(s, a) is a q-
state

Utilities of Sequences: Discounting

• How to discount?
• Each time we descend a level, we multiply in the

discount once

• Why discount?
• Reward now is better than later
• Can also think of it as a 1-gamma chance of ending

the process at every step
• Also helps our algorithms converge

• Example: discount of 0.5
• U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
• U([1,2,3]) < U([3,2,1])

162

Utilities of Sequences: Stationary Preferences

• Theorem: if we assume stationary preferences:

• Then: there are only two ways to define utilities
• Additive utility:

• Discounted utility:

163

Quiz: Discounting

• Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

• Quiz 1: For g = 1, what is the optimal policy?

• Quiz 2: For g = 0.1, what is the optimal policy?

• Quiz 3: For which g are West and East equally good when in state d?

164

<- <- <-

<- <- ->

1g=10 g3

Infinite Utilities?!

• Problem: What if the game lasts forever? Do we get infinite rewards?

• Solutions:
• Finite horizon: (similar to depth-limited search)

• Terminate episodes after a fixed T steps (e.g. life)
• Gives nonstationary policies (p depends on time left)

• Discounting: use 0 < g < 1

• Smaller g means smaller “horizon” – shorter term focus

• Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)

165

Racing Search Tree

• We’re doing way too much work
with expectimax!

• Problem: States are repeated
• Idea: Only compute needed quantities

once

• Problem: Tree goes on forever
• Idea: Do a depth-limited computation,

but with increasing depths until
change is small

• Note: deep parts of the tree eventually
don’t matter if γ < 1

166

Optimal Quantities

• The value (utility) of a state s:
• V*(s) = expected utility starting in s and

acting optimally

• The value (utility) of a q-state (s,a):
• Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

• The optimal policy:
• p*(s) = optimal action from state s

167

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Values of States

• Fundamental operation: compute the (expectimax) value of a state
• Expected utility under optimal action
• Average sum of (discounted) rewards
• This is just what expectimax computed!

• Recursive definition of value:

168

a

s

s, a

s,a,sʼ
sʼV⇤(s) = Q⇤(s, a)max

a
Q⇤(s, a) = R(s, a, s0)+ V⇤(s0)g[]Â

s0
T(s, a, s0)

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

Time-Limited Values

• Key idea: time-limited values

• Define Vk(s) to be the optimal value of s if the game ends in k more time
steps
• Equivalently, it’s what a depth-k expectimax would give from s

169
[Demo – time-limited values (L8D4)]

Value Iteration
• Start with V0(s) = 0: no time steps left means an expected reward sum of zero

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence, which yields V*

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do

170

a

Vk+1(s)

s, a

s,a,sʼ
Vk(s’)

Example

171

0 0 0

S: 1

Assume no discount!

F: .5*2+.5*2=2

Convergence

• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

• Case 2: If the discount is less than 1
• Proof Sketch:

• For any state Vk and Vk+1 can be viewed as depth k+1
expectimax results in nearly identical search trees

• The difference is that on the bottom layer, Vk+1 has actual
rewards while Vk has zeros

• That last layer is at best all RMAX

• It is at worst RMIN
• But everything is discounted by γk that far out
• So Vk and Vk+1 are at most γk max|R| different
• So as k increases, the values converge 172

Value Iteration (Revisited)

• Bellman equations characterize the optimal values:

• Value iteration computes them:

• Value iteration is just a fixed point solution method
• … though the 𝑉# vectors are also interpretable as

time-limited values

173

a

V(s)

s, a

s,a,sʼ
V(s’)

The Bellman Equations

174

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

V⇤(s) = Q⇤(s, a)max
a

Q⇤(s, a) = R(s, a, s0)+ V⇤(s0)g[]Â
s0

T(s, a, s0)

V⇤(s) = max
a Â

s0
T(s, a, s0)[R(s, a, s0) + gV⇤(s0)]

Policy Extraction: Computing
Actions from Values
• Let’s imagine we have the optimal values V*(s)

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the
values

175

Policy Extraction: Computing
Actions from Q-Values
• Let’s imagine we have the optimal
q-values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than
values!

176

Problems with Value Iteration

• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values

177

a

s

s, a

s,a,sʼ
sʼ

Policy Iteration

• Alternative approach for optimal values:
• Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
• Step 2: Policy Improvement: update policy using one-step look-ahead with

resulting converged (but not optimal!) utilities as future values
• Repeat steps until policy converges

• This is Policy Iteration
• It’s still optimal!
• Can converge (much) faster under some conditions

178

Policy Evaluation: Fixed Policies

• Expectimax trees max over all actions to compute the optimal values

• If we fix some policy p(s), then the tree would be simpler – only one action per
state
• … though the tree’s value would depend on which policy we fixed 179

a

s

s, a

s,a,sʼ
sʼ

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Do the optimal action Do what p says to do

Policy Evaluation: Utilities for a Fixed Policy

• Another basic operation: compute the utility of a state s under a
fixed (generally non-optimal) policy

• Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

• Recursive relation (one-step look-ahead / Bellman equation):

180

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Policy Evaluation: Implementation

• How do we calculate the V’s for a fixed policy p?

• Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

• Efficiency: O(S2) per iteration

• Idea 2: Without the maxes, the Bellman equations are just a linear system
• Solve with MATLAB (or your favorite linear system solver)

181

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Policy Iteration

• Evaluation: For fixed current policy 𝜋, find values
with policy evaluation:

• Iterate until values converge:

• Improvement: For fixed values, get a better (why? exercise) policy
using policy extraction

• One-step look-ahead:

182

Value Iteration vs. Policy Iteration

• Both value iteration and policy iteration compute the same thing (all optimal
values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because

we consider only one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done)

• Both are dynamic programs for solving MDPs
183

Reinforcement Learning

184

What Just Happened?

• That wasn’t planning, it was learning!
• Specifically, reinforcement learning
• There was an MDP, but you couldn’t solve it with just computation
• You needed to actually act to figure it out

• Important ideas in reinforcement learning that came up
• Exploration: you have to try unknown actions to get information
• Exploitation: eventually, you have to use what you know
• Regret: even if you learn intelligently, you make mistakes
• Sampling: because of chance, you have to try things repeatedly
• Difficulty: learning can be much harder than solving a known MDP

185

Reinforcement Learning

• What if we didn’t know 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠, 𝑎, 𝑠’)?

186

𝑉#$% 𝑠 = max
&
0
'(

𝑃 𝑠(𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠(+ 𝛾𝑉# 𝑠(, ∀ 𝑠

𝑄#$% 𝑠, 𝑎 =0
'(

𝑃 𝑠(𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠(+ 𝛾max
&!

𝑄#(𝑠(, 𝑎()] , ∀ 𝑠, 𝑎

𝜋) 𝑠 = argmax
&

0
'(

𝑃 𝑠(𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠(+ 𝛾𝑉 𝑠(] , ∀ 𝑠

𝑉#$%* 𝑠 =0
'(

𝑃 𝑠(𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠(+ 𝛾𝑉#* 𝑠(] , ∀ 𝑠

𝜋+,- 𝑠 = argmax
&

0
'(

𝑃 𝑠(𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠(+ 𝛾𝑉*"#$ 𝑠(, ∀ 𝑠

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Reinforcement Learning 2

• Basic idea:
• Receive feedback in the form of rewards
• Agent’s utility is defined by the reward function
• Must (learn to) act so as to maximize expected rewards
• All learning is based on observed samples of outcomes!

187

Environment

Agent

Actions: a
State: s

Reward: r

Reinforcement Learning 3

• Still assume a Markov decision process (MDP):
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R
• I.e. we don’t know which states are good or what the actions do
• Must actually try actions and states out to learn

188

Offline (MDPs) vs. Online (RL)

189

Offline Solution Online Learning

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP
• Model-free Passive RL

• Forego learning the MDP model, directly learn V or Q:
• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

• Key challenges:
• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

190

Model-Based Reinforcement Learning

• Model-Based Idea:
• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP
• For example, use value iteration, as before

191(and repeat as needed)

Example: Model-Based RL

192

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Analogy: Expected Age

193

Goal: Compute expected age of students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP
• Model-free Passive RL

• Forego learning the MDP model, directly learn V or Q:
• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

• Key challenges:
• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

194

Passive Model-Free Reinforcement Learning

• Simplified task: policy evaluation
• Input: a fixed policy p(s)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• Goal: learn the state values

• In this case:
• Learner is “along for the ride”
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning! You actually take actions in the world

195

Direct Evaluation

• Goal: Compute values for each state under p

• Idea: Average together observed sample values
• Act according to p
• Every time you visit a state, write down what the sum of discounted rewards

turned out to be
• Average those samples

• This is called direct evaluation

196

Example: Direct Evaluation

197

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Problems with Direct Evaluation

• What’s good about direct evaluation?
• It’s easy to understand
• It doesn’t require any knowledge of T, R
• It eventually computes the correct average values,

using just sample transitions

• What bad about it?
• It wastes information about state connections
• Each state must be learned separately
• So, it takes a long time to learn

198

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP
• Model-free Passive RL

• Forego learning the MDP model, directly learn V or Q:
• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

• Key challenges:
• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

199

Why Not Use Policy Evaluation?

• Simplified Bellman updates calculate V for a fixed policy:
• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how do we take a weighted average without knowing the weights?

200

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’
(by doing the action!) and average

Sample-Based Policy Evaluation?

201

p(s)

s

s, p(s)

s1's2' s3's'
s, p(s),s’

Almost! But we can’t
rewind time to get sample
after sample from state s

Temporal Difference Value Learning

• Big idea: learn from every experience!
• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

202

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Example: Temporal Difference Value Learning

203

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

• TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages
• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values
• Makes action selection model-free too!

204

a

s

s, a

s,a,sʼ
sʼ

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP
• Model-free Passive RL

• Forego learning the MDP model, directly learn V or Q:
• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

• Key challenges:
• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

205

Q-Value Iteration

• Value iteration: find successive (depth-limited) values
• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:

206

Q-Learning

• Q-Learning: sample-based Q-value iteration

• Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

207
[Demo: Q-learning – gridworld (L10D2)]

[Demo: Q-learning – crawler (L10D3)]

no longer policy
evaluation!

Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)

208

Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP
• Model-free Passive RL

• Forego learning the MDP model, directly learn V or Q:
• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

• Key challenges:
• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free.
we’ll cover only in context of Q-learning

209

Active Reinforcement Learning

• Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning! You actually take actions in the world and find

out what happens…

210

Exploration vs. Exploitation

211

How to Explore?

• Several schemes for forcing exploration
• Simplest: random actions (e-greedy)

• Every time step, flip a coin
• With (small) probability e, act randomly
• With (large) probability 1-e, act on current policy

• Problems with random actions?
• You do eventually explore the space, but keep thrashing around

once learning is done
• One solution: lower e over time
• Another solution: exploration functions

212
[Demo: Q-learning – manual exploration – bridge grid (L10D5)]

[Demo: Q-learning – epsilon-greedy -- crawler (L10D3)]

Exploration Functions

• When to explore?
• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function
• Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

•

• Action selection: Use 𝑎 ← argmax# 𝑄(𝑠, 𝑎)
• Note: this propagates the “bonus” back to states that lead to unknown states as well!

213

Modified Q-Update:
Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L10D4)]

A commonly used ‘exploration function’ is
𝑓 𝑢, 𝑛 = 𝑢 + 𝑐 log(1/𝛿) /𝑛, which is
derived by Chernoff-Hoeffding inequality
and 𝛿 is confidence level

The Story So Far: MDPs and RL

214

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

Multi-armed Bandits

215

Setting: Finite-armed stochastic bandits

• There are 𝐿 arms
• Each arm 𝑎 has an unknown reward distribution 𝜐9 with unknown mean 𝛼(𝑎)
• The best arm is 𝑎∗ = argmax9𝛼(𝑎)

• At each time 𝑡
• The learning agent selects an arm 𝑎;
• Observes the reward 𝑋9%,;~ 𝜐9%

items/products/movies/news/… CTR/profit/…

bandit feedback

Objective

• Maximize the expected cumulative reward in 𝑇 rounds

𝔼 I
;<=

>

𝛼(𝑎;)

• Minimize the regret in 𝑇 rounds
𝑅 𝑇 = 𝑇 K 𝛼 𝑎∗ − 𝔼 I

;<=

>

𝛼 𝑎;

• Balance the trade-off between exploration and exploitation
• Exploitation: Select arms that yield good results so far
• Exploration: Select arms that have not been tried much before

• Smaller order of 𝑇 in 𝑅 𝑇 is better

UCB – Upper confidence bound [Auer et
al.(2002)]
• With high probability

𝛼(𝜖 <𝛼((𝑡) −
2 log 𝑡
𝑇(𝑡

, <𝛼((𝑡) +
2 log 𝑡
𝑇((𝑡)

• Principle: optimism in face of uncertainty
• UCB policy:

𝑎> = argmax(<𝛼(+
2 log 𝑡
𝑇((𝑡)

sample mean round t

selection times of arm a
till round t

exploration

exploitation

Hoeffding’s inequality

UCB – Upper confidence bound 2

• Regret

𝑅 𝑇 = 𝑂
𝐿
Δ
log 𝑇

• Proof sketch
• Under good event (w/ high probability)
• If arm 𝑎 is pulled, then

α 𝑎∗ ≤ UCB9∗ ≤ UCB9 ≤ α 𝑎 + 2 radius9

• ⟹ $?@A ;
>'(;)

= radius9 ≥
B 9∗ CB 9

$

• ⟹ 𝑇9(𝑡) ≤
D ?@A ;
E'(

UCB – Upper confidence bound 3

220

Bayes Nets: Probabilistic Models

221

Uncertainty

• General situation:

• Observed variables (evidence): Agent knows certain things
about the state of the world (e.g., sensor readings or
symptoms)

• Unobserved variables: Agent needs to reason about other
aspects (e.g. where an object is or what disease is present)

• Model: Agent knows something about how the known
variables relate to the unknown variables

• Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge

222

Probabilistic Inference

• Probabilistic inference: compute a desired probability from other known
probabilities (e.g. conditional from joint)

• We generally compute conditional probabilities
• P(on time | no reported accidents) = 0.90
• These represent the agent’s beliefs given the evidence

• Probabilities change with new evidence:
• P(on time | no accidents, 5 a.m.) = 0.95
• P(on time | no accidents, 5 a.m., raining) = 0.80
• Observing new evidence causes beliefs to be updated

223

Inference by Enumeration

• General case:
• Evidence variables:
• Query* variable:
• Hidden variables:

224

All variables

* Works fine with
multiple query
variables, too

§ We want:

§ Step 1: Select the
entries consistent
with the evidence

§ Step 2: Sum out H to get joint
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z

Answer Any Query from Joint Distributions

• Two tools to go from joint to query
• Joint: 𝑃(𝐻$, 𝐻%, 𝑄, 𝐸)
• Query: 𝑃(𝑄 ∣ 𝑒)
1. Definition of conditional probability

𝑃 𝑄 𝑒 =
𝑃 𝑄, 𝑒
𝑃 𝑒

2. Law of total probability (marginalization, summing out)

𝑃 𝑄, 𝑒 ==
&!

=
&"

𝑃(ℎ$, ℎ%, 𝑄, 𝑒)

𝑃 𝑒 ==
'

=
&!

=
&"

𝑃(ℎ$, ℎ%, 𝑞, 𝑒)

Only need to compute 𝑃 𝑄, 𝑒 then normalize
225

Answer Any Query from Joint Distributions

• Joint distributions are the best!

• Problems with joints
• We aren’t given the joint table
• Usually some set of conditional probability

tables

• Problems with inference by enumeration
• Worst-case time complexity O(dn)
• Space complexity O(dn) to store the joint distribution

226

Joint

Query

𝑃 𝑎 𝑒)

Build Joint Distribution Using Chain Rule

227

Conditional Probability Tables
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)

Quiz

• Variables
• B: Burglary
• A: Alarm goes off
• M: Mary calls
• J: John calls
• E: Earthquake!

How many different ways can we write the chain rule?
A. 1
B. 5
C. 5 𝑐ℎ𝑜𝑜𝑠𝑒 5
D. 5!
E. 5.

228

Answer Any Query from Condition Probability
Tables
• Bayes’ rule as an example
• Given: 𝑃 𝐸 𝑄 , 𝑃 𝑄 Query: 𝑃(𝑄 ∣ 𝑒)
1. Construct the joint distribution

1. Product Rule or Chain Rule
𝑃 𝐸, 𝑄 = 𝑃 𝐸 𝑄 𝑃(𝑄)

2. Answer query from joint
1. Definition of conditional probability

𝑃 𝑄 𝑒 =
𝑃 𝑒, 𝑄
𝑃 𝑒

2. Law of total probability (marginalization, summing out)

𝑃 𝑄 𝑒 =
𝑃 𝑒, 𝑄
∑& 𝑃(𝑒, 𝑞)

Only need to compute 𝑃 𝑒, 𝑄 then normalize 229

Bayesian Networks

• One node per random variable, DAG
• One conditional probability table (CPT) per node:

P(node | Parents(node))

230

Bayes net

𝐴

𝐵

𝐶

𝐷𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶

Encode joint distributions as product of conditional
distributions on each variable

𝑃 𝑋=, … , 𝑋F =`
!

𝑃 𝑋! 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋!))

Answer Any Query from Condition Probability
Tables

231

Conditional Probability Tables
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)

Answer Any Query from Condition Probability
Tables 2

232

Conditional Probability Tables
and Chain Rule

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)

• Problems
§ Huge
• 𝑛 variables with 𝑑

values
• 𝑑L entries

§ We aren’t given the
right tables

Do We Need the Full Chain Rule?

• Binary random variables

• Fire
• Smoke
• Alarm

233

Answer Any Query from Condition Probability
Tables

234

Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

𝑃 𝑋=, … , 𝑋F =`
!

𝑃 𝑋! 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋!))

Probabilistic Models

• Models describe how (a portion of) the world
works

• Models are always simplifications
• May not account for every variable
• May not account for all interactions between

variables
• “All models are wrong; but some are useful.”

– George E. P. Box

• What do we do with probabilistic models?
• We (or our agents) need to reason about unknown

variables, given evidence
• Example: explanation (diagnostic reasoning)
• Example: prediction (causal reasoning)
• Example: value of information 235

(General) Bayesian Networks

• One node per random variable, DAG
• One conditional probability table (CPT) per node:

P(node | Parents(node))

236

Encode joint distributions as product of conditional
distributions on each variable

𝑃 𝑋=, … , 𝑋F =`
!

𝑃 𝑋! 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋!))

Bayes net

𝐴

𝐵

𝐶

𝐷𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃(𝐵) 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐶

Conditional Independence
• P(Toothache, Cavity, Catch)

• If I have a cavity, the probability that the probe catches in it
doesn't depend on whether I have a toothache:
• P(+catch | +toothache, +cavity) = P(+catch | +cavity)

• The same independence holds if I donʼt have a cavity:
• P(+catch | +toothache, -cavity) = P(+catch| -cavity)

• Catch is conditionally independent of Toothache given Cavity:
• P(Catch | Toothache, Cavity) = P(Catch | Cavity)

• Equivalent statements:
• P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
• P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch |

Cavity)
• One can be derived from the other easily 237

Conditional Independence (cont.)

• Unconditional (absolute) independence very rare (why?)

• Conditional independence is our most basic and robust form of knowledge about
uncertain environments.

• X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if

238

P (x|z, y) = P (x, z, y)

P (z, y)
<latexit sha1_base64="nlffBknyZ/sA7O7iHSJid3byl04=">AAACCXicbVBNS8MwGE79nPOr6tFLcAgTxminoBdh6MXjBPcBWxlplm5haVqSVKx1Vy/+FS8eFPHqP/DmvzHtetDNB0Ke93nel+R93JBRqSzr21hYXFpeWS2sFdc3Nre2zZ3dlgwigUkTBywQHRdJwignTUUVI51QEOS7jLTd8WXqt2+JkDTgNyoOieOjIacexUhpqW/CRvnu4b4SH533PIFwostKWk40y+6+WbKqVgY4T+yclECORt/86g0CHPmEK8yQlF3bCpWTIKEoZmRS7EWShAiP0ZB0NeXIJ9JJsk0m8FArA+gFQh+uYKb+nkiQL2Xsu7rTR2okZ71U/M/rRso7cxLKw0gRjqcPeRGDKoBpLHBABcGKxZogLKj+K8QjpBNROryiDsGeXXmetGpV+7hauz4p1S/yOApgHxyAMrDBKaiDK9AATYDBI3gGr+DNeDJejHfjY9q6YOQze+APjM8fekqY7A==</latexit>

=
P (x, y|z)P (z)

P (y|z)P (z)
<latexit sha1_base64="GnMuqgpm6obIL845VqJVIbmozVw=">AAACCXicbZBNS8MwGMdTX+d8q3r0EhzCBjLaKehFGHrxWMG9wFZGmqVbWJqWJBW7uqsXv4oXD4p49Rt489uYbUV08w+BX/7P85A8fy9iVCrL+jIWFpeWV1Zza/n1jc2tbXNnty7DWGBSwyELRdNDkjDKSU1RxUgzEgQFHiMNb3A5rjduiZA05DcqiYgboB6nPsVIaatjwvO2LxBOneLdUXI/LDnFYWmkbz/cMQtW2ZoIzoOdQQFkcjrmZ7sb4jggXGGGpGzZVqTcFAlFMSOjfDuWJEJ4gHqkpZGjgEg3nWwygofa6UI/FPpwBSfu74kUBVImgac7A6T6crY2Nv+rtWLln7kp5VGsCMfTh/yYQRXCcSywSwXBiiUaEBZU/xXiPtLJKB1eXodgz648D/VK2T4uV65PCtWLLI4c2AcHoAhscAqq4Ao4oAYweABP4AW8Go/Gs/FmvE9bF4xsZg/8kfHxDbHVmQ4=</latexit>

=
P (x|z)P (y|z)P (z)

P (y|z)P (z)
<latexit sha1_base64="I44Acz6OzVDALto3cROLqzMTYRo=">AAACDXicbZC7TsMwFIYdrqXcAowsFgWpXaqkIMGCVMHCGCR6kdqoclynteo4ke0g2tAXYOFVWBhAiJWdjbfBTTOUliPZ+vT/58g+vxcxKpVl/RhLyyura+u5jfzm1vbOrrm3X5dhLDCp4ZCFoukhSRjlpKaoYqQZCYICj5GGN7ie+I17IiQN+Z0aRsQNUI9Tn2KktNQxjy/bvkA4cYoPj6OSUxym96g0Tma4YxasspUWXAQ7gwLIyumY3+1uiOOAcIUZkrJlW5FyEyQUxYyM8+1YkgjhAeqRlkaOAiLdJN1mDE+00oV+KPThCqbq7ESCAimHgac7A6T6ct6biP95rVj5F25CeRQrwvH0IT9mUIVwEg3sUkGwYkMNCAuq/wpxH+l0lA4wr0Ow51dehHqlbJ+WK7dnhepVFkcOHIIjUAQ2OAdVcAMcUAMYPIEX8AbejWfj1fgwPqetS0Y2cwD+lPH1C52FmqE=</latexit>

Conditional Independence and the Chain Rule
• Chain rule:

• Trivial decomposition:

• With assumption of conditional independence:

• Bayesʼnets / graphical models help us express conditional independence assumptions

239

Bayes’ Nets: Big Picture

• Two problems with using full joint distribution tables
as our probabilistic models:
• Unless there are only a few variables, the joint is WAY too big

to represent explicitly
• Hard to learn (estimate) anything empirically about more

than a few variables at a time

• Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
• More properly called graphical models
• We describe how variables locally interact
• Local interactions chain together to give global, indirect

interactions
• We first look at some examples

240

Bayes’ Net Semantics

• A set of nodes, one per variable X

• A directed, acyclic graph

• A conditional distribution for each node

• A collection of distributions over X, one for each
combination of parentsʼ values

• CPT: conditional probability table

• Description of a noisy “causal” process

241

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

• Bayesʼ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment, multiply all the relevant conditionals
together:

• Example:

242
=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)

Probabilities in BNs 2
• Why are we guaranteed that setting

results in a proper joint distribution?

• Chain rule (valid for all distributions):

• Assume conditional independences:

à Consequence:

• Not every BN can represent every joint distribution
• The topology enforces certain conditional independencies

243

Example: Alarm Network

244

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ

Quiz

• Compute 𝑃 −𝑐,+𝑠, −𝑟, +𝑤

A. 0.0
B. 0.0004
C. 0.001
D. 0.036
E. 0.18
F. 0.198
G. 0.324

245

Conditional Independence Semantics 2

• For the following Bayes nets, write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

246

𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶
𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐵)
C is independent from A given B

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐴)
C is independent from B given A

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵

Assumption:
𝑃 𝐵 𝐴 = 𝑃(𝐵)
A is independent from B given { }

Causal Chains

• This configuration is a “causal chain”

247

X: Low pressure Y: Rain Z: Traffic

§ Guaranteed X independent of Z ?
§ No!

§ One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

§ Example:

§ Low pressure causes rain causes traffic,
high pressure causes no rain causes no
traffic

§ In numbers:

P(+y | +x) = 1, P(-y | - x) = 1,
P(+z | +y) = 1, P(-z | -y) = 1

Causal Chains 2

• This configuration is a “causal chain”

248

§ Guaranteed X independent of Z given Y?

§ Evidence along the chain “blocks” the
influence

Yes!

X: Low pressure Y: Rain Z: Traffic

Common Causes

• This configuration is a “common cause”

249

§ Guaranteed X independent of Z ?
§ No!

§ One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

§ Example:

§ Project due causes both forums busy
and lab full

§ In numbers:

P(+x | +y) = 1, P(-x | -y) = 1,
P(+z | +y) = 1, P(-z | -y) = 1

Y: Project
due

X: Forums
busy Z: Lab full

Common Cause 2

• This configuration is a “common cause”

250

§ Guaranteed X and Z independent given Y?

§ Observing the cause blocks influence
between effects

Yes!

Y: Project
due

X: Forums
busy Z: Lab full

Common Effect

• Last configuration: two causes of
one effect (v-structures)

251
Z: Traffic

§ Are X and Y independent?

§ Yes: the ballgame and the rain cause traffic, but
they are not correlated

§ Proof:
X: Raining Y: Ballgame

P (x, y) =
X

z

P (x, y, z)

=
X

z

P (x)P (y)P (z|x, y)

= P (x)P (y)
X

z

P (z|x, y)

= P (x)P (y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Common Effect 2

• Last configuration: two causes of
one effect (v-structures)

252
Z: Traffic

§ Are X and Y independent?

§ Yes: the ballgame and the rain cause traffic, but
they are not correlated

§ (Proved previously)

§ Are X and Y independent given Z?

§ No: seeing traffic puts the rain and the ballgame in
competition as explanation.

§ This is backwards from the other cases

§ Observing an effect activates influence between
possible causes

X: Raining Y: Ballgame

Causality?

• When Bayesʼ nets reflect the true causal patterns:
• Often simpler (nodes have fewer parents)
• Often easier to think about
• Often easier to elicit from experts

• BNs need not actually be causal
• Sometimes no causal net exists over the domain (especially if

variables are missing)
• E.g. consider the variables Traffic and Drips
• End up with arrows that reflect correlation, not causation

• What do the arrows really mean?
• Topology may happen to encode causal structure
• Topology really encodes conditional independence

253

Bayes Net Semantics

• A directed, acyclic graph, one node per random
variable

• A conditional probability table (CPT) for each node

• A collection of distributions over X, one for each
combination of parents’ values

• Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

254

Size of a Bayes Net

• How big is a joint distribution over N
Boolean variables?

2N

• How big is an N-node net if nodes have up
to k parents?

O(N * 2k+1)

255

§ Both give you the power to calculate

§ BNs: Huge space savings!

§ Also easier to elicit local CPTs

§ Also faster to answer queries

Bayes Nets: Assumptions

• Assumptions we are required to make to define the
Bayes net when given the graph:

• Beyond those “chain rule à Bayes net” conditional
independence assumptions

• Often additional conditional independences

• They can be read off the graph

• Important for modeling: understand assumptions
made when choosing a Bayes net graph

256

P (xi|x1 · · ·xi�1) = P (xi|parents(Xi))

Example

• Conditional independence assumptions directly from simplifications
in chain rule:

• Additional implied conditional independence assumptions?

257

X Y Z W

P (x, y, z, w) = P (x)P (y|x)P (z|y)P (w|z)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

P (x, y, z, w) = P (x)P (y|x)P (z|x, y)P (w|x, y, z)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

X ?? Z|Y
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W ?? {X,Y }|Z
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W ?? X|Y
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

How?

Independence in a BN

• Important question about a BN:
• Are two nodes independent given certain evidence?
• If yes, can prove using algebra (tedious in general)
• If no, can prove with a counter example
• Example:

• Question: are X and Z necessarily independent?
• Answer: no. Example: low pressure causes rain, which causes traffic.
• X can influence Z, Z can influence X (via Y)
• Addendum: they could be independent: how?

258

X Y Z

The General Case

• General question: in a given BN, are two variables independent (given
evidence)?

• Solution: analyze the graph

• Any complex example can be broken
into repetitions of the three canonical cases

259

Bayes Ball

• Question: Are X and Y conditionally independent
given evidence variables {Z}?

1. Shade in Z
2. Drop a ball at X
3. The ball can pass through any active path and

is blocked by any inactive path (ball can move
either direction on an edge)

4. If the ball reaches Y, then X and Y are NOT
conditionally independent given Z

260

Active Triples Inactive Triples

Example

261

Yes R

T

B

Tʼ

Example 2

262

R

T

B

D

L

Tʼ

Yes

Yes

Yes

Example 3

• Variables:
• R: Raining
• T: Traffic
• D: Roof drips
• S: I’m sad

• Questions:

263

T

S

D

R

Yes

Quiz

• Is 𝑋M independent from 𝑋N given 𝑋O?

264

Quiz (cont.)

• Is 𝑋M independent from 𝑋N given 𝑋O?
• No, the Bayes ball can travel through 𝑋P and 𝑋Q.

265

Quiz 2

• Is 𝑋O independent from 𝑋P given 𝑋M and 𝑋N?

266

Quiz 2 (cont.)

• Is 𝑋O independent from 𝑋P given 𝑋M and 𝑋N?
• No, the Bayes ball can travel through 𝑋Q and 𝑋N.

267

Bayes Nets: Inference

268

Queries

• What is the probability of this given what I know?

𝑃 𝑞 𝑒 =
𝑃(𝑞, 𝑒)
𝑃(𝑒)

=
∑'(∑') 𝑃 𝑞, ℎ(, ℎ), 𝑒

𝑃(𝑒)
• What are the probabilities of all the possible outcomes (given what I know)?

𝑃 𝑄 𝑒 =
𝑃 𝑄, 𝑒
𝑃 𝑒 =

∑'(∑') 𝑃 𝑄, ℎ(, ℎ), 𝑒
𝑃(𝑒)

• Which outcome is the most likely outcome (given what I know)?

argmax&∈+ 𝑃 𝑞 𝑒 = argmax&∈+
𝑃 𝑞, 𝑒
𝑃 𝑒

= argmax&∈+
∑'(∑') 𝑃 𝑞, ℎ(, ℎ), 𝑒

𝑃(𝑒)
269

Inference by Enumeration in Joint
Distributions
• General case:

• Evidence variables:
• Query* variable:
• Hidden variables:

270

All variables

* Works fine with
multiple query
variables, too

§ We want:

§ Step 1: Select the
entries consistent
with the evidence

§ Step 2: Sum out H to get joint
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z

Inference by Enumeration: Procedural Outline

• Track objects called factors
• Initial factors are local CPTs (one per node)

• Any known values are selected
• E.g. if we know , the initial factors are

• Procedure: Join all factors, then sum out all
hidden variables

271

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

Operation 1: Join Factors

• First basic operation: joining factors
• Combining factors:

• Just like a database join
• Get all factors over the joining variable
• Build a new factor over the union of the variables involved

• Example: Join on R

• Computation for each entry: pointwise products

272

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T

Operation 2: Eliminate

• Second basic operation: marginalization

• Take a factor and sum out a variable

• Shrinks a factor to a smaller one

• A projection operation

• Example:

273

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83

Thus Far: Multiple Join, Multiple Eliminate (=
Inference by Enumeration)

274

Inference by Enumeration in Bayes Net

• Reminder of inference by enumeration:
• Any probability of interest can be computed by summing entries

from the joint distribution
• Entries from the joint distribution can be obtained from a BN by

multiplying the corresponding conditional probabilities

P(B | j, m) = α P(B, j, m)
= α åe,a P(B, e, a, j, m)
= α åe,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)

• So inference in Bayes nets means computing sums of
products of numbers: sounds easy!!

• Problem: sums of exponentially many products!

275

B E

A

MJ

Can we do better?

• Consider
• 𝑥%𝑦%𝑧% + 𝑥%𝑦%𝑧/ + 𝑥%𝑦/𝑧% + 𝑥%𝑦/𝑧/ + 𝑥/𝑦%𝑧% + 𝑥/𝑦%𝑧/ + 𝑥/𝑦/𝑧% + 𝑥/𝑦/𝑧/
• 16 multiplies, 7 adds
• Lots of repeated subexpressions!

• Rewrite as
• (𝑥% + 𝑥/)(𝑦% + 𝑦/)(𝑧% + 𝑧/)
• 2 multiplies, 3 adds

0
,

0
&

𝑃 𝐵 𝑃 𝑒 𝑃 𝑎 𝐵, 𝑒 𝑃 𝑗 𝑎 𝑃 𝑚 𝑎)

• Lots of repeated subexpressions!
276

= 𝑃 𝐵 𝑃(+𝑒) 𝑃 +𝑎 𝐵,+𝑒 𝑃 𝑗 +𝑎 𝑃(𝑚 | + 𝑎)
+ 𝑃 𝐵 𝑃(−𝑒) 𝑃 +𝑎 𝐵,−𝑒 𝑃 𝑗 +𝑎 𝑃(𝑚 | + 𝑎)
+ 𝑃 𝐵 𝑃(+𝑒) 𝑃 −𝑎 𝐵,+𝑒 𝑃 𝑗 −𝑎 𝑃(𝑚 | − 𝑎)
+ 𝑃 𝐵 𝑃(−𝑒) 𝑃 −𝑎 𝐵,−𝑒 𝑃 𝑗 −𝑎 𝑃 𝑚 − 𝑎

Inference by Enumeration vs. Variable
Elimination
• Why is inference by enumeration so

slow?
• You join up the whole joint distribution

before you sum out the hidden variables

277

§ Idea: interleave joining and marginalizing!
§ Called “Variable Elimination”
§ Still NP-hard, but usually much faster than

inference by enumeration

Inference Overview

278

• Given random variables 𝑄,𝐻, 𝐸 (query, hidden, evidence)
• We know how to do inference on a joint distribution

𝑃 𝑞 𝑒 = 𝛼 𝑃 𝑞, 𝑒
= 𝛼∑G∈{G),G(}𝑃(𝑞, ℎ, 𝑒)

• We know Bayes nets can break down joint in to CPT factors
𝑃 𝑞 𝑒 = 𝛼∑G∈{G),G(}𝑃 ℎ 𝑃 𝑞 ℎ 𝑃(𝑒|𝑞)

= 𝛼 [𝑃 ℎ= 𝑃 𝑞 ℎ= 𝑃 𝑒 𝑞 + 𝑃 ℎ$ 𝑃 𝑞 ℎ$ 𝑃 𝑒 𝑞]
• But we can be more efficient

𝑃 𝑞 𝑒 = 𝛼 𝑃(𝑒|𝑞)∑G∈{G),G(}𝑃 ℎ 𝑃 𝑞 ℎ
= 𝛼 𝑃 𝑒 𝑞 [𝑃 ℎ= 𝑃 𝑞 ℎ= + 𝑃 ℎ$ 𝑃 𝑞 ℎ$]
= 𝛼 𝑃 𝑒 𝑞 𝑃(𝑞)

• Now just extend to larger Bayes nets and a variety of queries

𝐻 𝑄 𝐸

En
um

er
at

io
n

Va
ria

bl
e

El
im

in
at

io
n

Answer Any Query from Bayes Net (Previous)

279

Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

Next: Answer Any Query from Bayes Net

280

Bayes Net

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

Marginalizing Early! (aka VE)

281

Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T

Evidence

• If evidence, start with factors that select that evidence
• No evidence, uses these initial factors:

• Computing , the initial factors become:

• We eliminate all vars other than query + evidence
282

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Evidence II

• Result will be a selected joint of query and evidence
• E.g. for P(L | +r), we would end up with:

• To get our answer, just normalize this!

• That ’s it!

283

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize

Variable Elimination

• General case:
• Evidence variables:
• Query* variable:
• Hidden variables:

284

All variables

* Works fine with
multiple query
variables, too

§ We want:

§ Step 1: Select the
entries consistent
with the evidence

§ Step 2: Sum out H to get joint
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z

§ Interleave joining and summing out

General Variable Elimination

• Query:

• Start with initial factors:
• Local CPTs (but instantiated by evidence)

• While there are still hidden variables (not Q or
evidence):
• Pick a hidden variable H
• Join all factors mentioning H
• Eliminate (sum out) H

• Join all remaining factors and normalize

285

Variable Elimination

function VariableElimination(Q , e, bn) returns a distribution over Q
factors ← []
for each var in ORDER(bn.vars) do
factors ← [MAKE-FACTOR(var, e)|factors]
if var is a hidden variable then

factors ← SUM-OUT(var,factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

286

Example

287

marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z) = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

P (B|j,m) / P (B, j,m)

=
X

e,a

P (B, j,m, e, a)

=
X

e,a

P (B)P (e)P (a|B, e)P (j|a)P (m|a)

=
X

e

P (B)P (e)
X

a

P (a|B, e)P (j|a)P (m|a)

= P (B)f2(j,m|B)

= P (B)
X

e

P (e)f1(j,m|B, e)

=
X

e

P (B)P (e)f1(j,m|B, e)

Example (cont’d)

288

Choose A

Example (cont’d)

289

Choose E

Finish with B

Normalize

Another Variable Elimination Example

290

Computational complexity critically
depends on the largest factor being
generated in this process. Size of factor
= number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as
they all only have one variable (Z, Z,
and X3 respectively).

Start by inserting evidence, which gives the following initial factors:

P (Z), P (X1|Z), P (X2|Z), P (X3|Z), P (y1|X1), P (y2|X2), P (y3|X3)

Eliminate X2, this introduces the factor f2(y2|Z) =
P

x2
P (x2|Z)P (y2|x2),

and we are left with:

P (Z), P (X3|Z), P (y3|X3), f1(y1|Z), f2(y2|Z)

Eliminate X1, this introduces the factor f1(y1|Z) =
P

x1
P (x1|Z)P (y1|x1),

and we are left with:

P (Z), P (X2|Z), P (X3|Z), P (y2|X2), P (y3|X3), f1(y1|Z)

Eliminate Z, this introduces the factor f3(y1, y2, X3) =
P

z P (z)P (X3|z)f1(y1|Z)f2(y2|Z),
and we are left with:

P (y3|X3), f3(y1, y2, X3)

No hidden variables left. Join the remaining factors to get:

f4(y1, y2, y3, X3) = P (y3|X3), f3(y1, y2, X3)

Normalizing overX3 gives P (X3|y1, y2, y3) = f4(y1, y2, y3, X3)/
P

x3
f4(y1, y2, y3, x3)

Variable Elimination Ordering

• For the query P(Xn|y1,…,yn) work through the following two different orderings as done in previous
slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z. What is the size of the maximum factor generated for each of the
orderings?

• Answer: 2n versus 2 (assuming binary)

• In general: the ordering can greatly affect efficiency 291

…

…

VE: Computational and Space Complexity

• The computational and space complexity of variable elimination is determined by
the largest factor

• The elimination ordering can greatly affect the size of the largest factor
• E.g., previous slide’s example 2n vs. 2

• Does there always exist an ordering that only results in small factors?
• No!

292

Worst Case Complexity?
• CSP:

• If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution
• Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general 293

…

…

Variable Elimination: The basic ideas

• Move summations inwards as far as possible
• P(B | j, m) = α åeåaP(B) P(e) P(a|B,e) P(j|a) P(m|a)

= α P(B) åe P(e) åa P(a|B,e) P(j|a) P(m|a)

• Do the calculation from the inside out
• I.e., sum over a first, then sum over e
• Problem: P(a|B,e) isn’t a single number, it’s a bunch of different numbers

depending on the values of B and e
• Solution: use arrays of numbers (of various dimensions) with appropriate

operations on them; these are called factors

294

Sampling

295

Sampling

• Sampling is a lot like repeated
simulation

• Predicting the weather, basketball
games, …

• Basic idea
• Draw N samples from a sampling

distribution S
• Compute an approximate posterior

probability
• Show this converges to the true

probability P

296

• Why sample?
• Learning: get samples from a

distribution you don’t know
• Inference: getting a sample is

faster than computing the right
answer (e.g. with variable
elimination)

Sampling 2

• Sampling from given distribution
• Step 1: Get sample u from uniform

distribution over [0, 1)
• E.g. random() in python

• Step 2: Convert this sample u into an
outcome for the given distribution by
having each target outcome
associated with a sub-interval of [0,1)
with sub-interval size equal to
probability of the outcome

297

C P(C)
red 0.6

green 0.1
blue 0.3

• Example

• If random() returns u = 0.83, then our
sample is C = blue

• E.g, after sampling 8 times:

Sampling in Bayes’ Nets

• Prior Sampling

• Rejection Sampling

• Likelihood Weighting

• Gibbs Sampling

298

Prior Sampling: Example

299

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c
+s 0.1
-s 0.9

-c
+s 0.5
-s 0.5

+c
+r 0.8
-r 0.2

-c
+r 0.2
-r 0.8

+s +r
+w 0.99
-w 0.01

-r
+w 0.90
-w 0.10

-s +r
+w 0.90
-w 0.10

-r
+w 0.01
-w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…

Prior Sampling: Algorithm

300

Prior Sampling

• This process generates samples with probability:

• …i.e. the BN’s joint probability

• Let the number of samples of an event be

• Then

• i.e., the sampling procedure is consistent

301

Example

• We’ll get a bunch of samples from the BN:
• +c, -s, +r, +w
• +c, +s, +r, +w
• -c, +s, +r, -w
• +c, -s, +r, +w
• -c, -s, -r, +w

• If we want to know P(W)
• We have counts <+w:4, -w:1>
• Normalize to get P(W) = <+w:0.8, -w:0.2>
• This will get closer to the true distribution with more samples
• Can estimate anything else, too

• P(C | +w)? P(C | +r, +w)?
• Can also use this to estimate expected value of f(X) - Monte Carlo Estimation

• What about P(C | -r, -w)?

302

S R

W

C

Rejection Sampling

• Let’s say we want P(C)
• Just tally counts of C as we go

• Let’s say we want P(C | +s)
• Same thing: tally C outcomes, but ignore (reject)

samples which don’t have S=+s
• This is called rejection sampling
• We can toss out samples early!
• It is also consistent for conditional probabilities

(i.e., correct in the limit)

303

S R

W

C

Rejection Sampling: Algorithm

304

Likelihood Weighting
• Problem with rejection sampling:

• If evidence is unlikely, rejects lots of
samples

• Consider P(Shape | blue)

305

• Idea: fix evidence variables and
sample the rest
• Problem: sample distribution not

consistent!
• Solution: weight by probability of

evidence given parents

Shape ColorShape Color

pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green

pyramid, blue
pyramid, blue
sphere, blue
cube, blue
sphere, blue

Likelihood Weighting: Example

306

+c 0.5
-c 0.5

+c
+s 0.1
-s 0.9

-c
+s 0.5
-s 0.5

+c
+r 0.8
-r 0.2

-c
+r 0.2
-r 0.8

+s +r
+w 0.99
-w 0.01

-r
+w 0.90
-w 0.10

-s +r
+w 0.90
-w 0.10

-r
+w 0.01
-w 0.99

Samples:

+c, +s, +r, +w
-c, +s, -r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

w = 1.0 x 0.1 x 0.99
w = 1.0 x 0.5 x 0.90

Likelihood Weighting: Algorithm

307

Likelihood Weighting

• Sampling distribution if z sampled and e fixed evidence

• Now, samples have weights

• Together, weighted sampling distribution is consistent

308

Cloudy

R

C

S

W

Likelihood Weighting
• Likelihood weighting is helpful

• We have taken evidence into account as we
generate the sample

• E.g. here, W’s value will get picked based on
the evidence values of S, R

• More of our samples will reflect the state of
the world suggested by the evidence

309

• Likelihood weighting doesn’t solve all our
problems
• Evidence influences the choice of downstream

variables, but not upstream ones (C isn’t more
likely to get a value matching the evidence)

• We would like to consider evidence when we
sample every variable (leads to Gibbs
sampling)

S R

W

C

Gibbs Sampling: Example P(S | +r)

310

▪ Step 2: Initialize other variables
▪ Randomly

• Step 1: Fix evidence
• R = +r

S +r

W

C

S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

• Steps 3: Repeat
• Choose a non-evidence variable X
• Resample X from P(X | all other variables)*

Gibbs Sampling
• Procedure

• Keep track of a full instantiation 𝑥%, … , 𝑥+
• Start with an arbitrary instantiation consistent with the evidence
• Sample one variable at a time, conditioned on all the rest, but keep evidence fixed
• Keep repeating this for a long time

• Property
• In the limit of repeating this infinitely many times the resulting samples come from the

correct distribution (i.e. conditioned on evidence)
• Rationale

• Both upstream and downstream variables condition on evidence
• In contrast:

• Likelihood weighting only conditions on upstream evidence, and hence weights obtained in
likelihood weighting can sometimes be very small

• Sum of weights over all samples is indicative of how many “effective” samples were obtained,
so we want high weight

311
S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

Resampling of One Variable

• Sample from P(S | +c, +r, -w)

• Many things cancel out – only CPTs with S remain!
• More generally: only CPTs that have resampled variable need to be considered,

and joined together
312

S +r

W

C

Bayes’ Net Sampling Summary

313

• Prior Sampling P(Q)

• Likelihood Weighting P(Q|e)

• Rejection Sampling P(Q|e)

• Gibbs Sampling P(Q|e)

Decision Networks

314

Decision Networks

315

Weather

Forecast

Umbrella

U

Decision Networks 2
• MEU: choose the action which maximizes the expected utility given the evidence

• Can directly operationalize this with decision networks

• Bayes nets with nodes for utility and actions

• Lets us calculate the expected utility for each action

• New node types:

• Chance nodes (just like BNs)

• Actions (rectangles, cannot have parents, act as observed evidence)

• Utility node (diamond, depends on action and chance nodes)

316

Weather

Forecast

Umbrella

U

Decision Networks 3

• Action selection

• Instantiate all evidence

• Set action node(s) each possible way

• Calculate posterior for all parents of
utility node, given the evidence

• Calculate expected utility for each
action

• Choose maximizing action

317

Weather

Forecast

Umbrella

U

Maximum Expected Utility

318

Weather

Umbrella

U

W P(W)
sun 0.7
rain 0.3

Umbrella = leave

Umbrella = take

Optimal decision = leave

A W U(A,W)
leave sun 100
leave rain 0
take sun 20
take rain 70

Decisions as Outcome Trees

319

• Almost exactly like expectimax / MDPs
• What’s changed?

U(t,s)

Weather | {} Weather | {}

take leave

{}

sun

U(t,r)

rain

U(l,s) U(l,r)

rainsunWeather

Umbrella

U

Maximum Expected Utility

320

Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

P(W) P(F|W)

P(W|F)= P(W, F)
Âw P(w, F)

=
P(F|W)P(W)

Âw P(F|w)P(w)

Umbrella = leave

Maximum Expected Utility 2

321

Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take

Decisions as Outcome Trees

322

U(t,s)

W | {b} W | {b}

take leave

sun

U(t,r)

rain

U(l,s) U(l,r)

rainsun

{b}

Weather

Forecast
=bad

Umbrella

U

Video of Demo Ghostbusters with Probability

323

Ghostbusters Decision Network

324

Ghost Location

Sensor (1,1)

Bust

U

Sensor (1,2) Sensor (1,3) Sensor (1,n)

Sensor (2,1)

Sensor (m,1) Sensor (m,n)…

…

…

…
Demo: Ghostbusters with probability

Value of Information

325

Value of Information
• Idea: compute value of acquiring evidence

• Can be done directly from decision network

• Example: buying oil drilling rights
• Two blocks A and B, exactly one has oil, worth k
• You can drill in one location
• Prior probabilities 0.5 each, & mutually exclusive
• Drilling in either A or B has EU = k/2, MEU = k/2

• Question: what’s the value of information of O?
• Value of knowing which of A or B has oil
• Value is expected gain in MEU from new info
• Survey may say “oil in a” or “oil in b,” prob 0.5 each
• If we know OilLoc, MEU is k (either way)
• Gain in MEU from knowing OilLoc?
• VPI(OilLoc) = k/2
• Fair price of information: k/2

326

OilLoc

DrillLoc

U

D O U

a a k

a b 0

b a 0

b b k

O P

a 1/2

b 1/2

Value of Perfect Information

327

Weather

Forecast

Umbrella

U

A W U

leave sun 100

leave rain 0

take sun 20

take rain 70

MEU with no evidence

MEU if forecast is bad

MEU if forecast is good

F P(F)

good 0.59

bad 0.41

Forecast distribution

Value of Information
• Assume we have evidence E=e. Value if we act now:

• Assume we see that E’ = e’. Value if we act then:

• BUT E’ is a random variable whose value is
unknown, so we don’t know what e’ will be

• Expected value if E’ is revealed and then we act:

• Value of information: how much MEU goes up
by revealing E’ first then acting, over acting now:

328

P(s | +e)

{+e}
a

U

{+e, +e’}
a

P(s | +e, +e’)
U

{+e}
P(+e’ | +e)
{+e, +e’}

P(-e’ | +e)
{+e, -e’}

a

Value of Information 2

329

P(s | +e)

{+e}
a

U

{+e, +e’}
a

P(s | +e, +e’)
U

{+e}
P(+e’ | +e)
{+e, +e’}

P(-e’ | +e)
{+e, -e’}

a

=
X

e0

P (e0|e)max
a

X

s

P (s|e, e0)U(s, a)
<latexit sha1_base64="zCWzkavAye+jYEqeXezI3ypFu+E=">AAACF3icbVDLSgNBEJz1GeMr6tHLYJAkEMJuFPQiiF48RjBGSMLSO+kkgzO7y8ysGNb8hRd/xYsHRbzqzb9x8jj4Kmgoqrrp7gpiwbVx3U9nZnZufmExs5RdXlldW89tbF7qKFEM6ywSkboKQKPgIdYNNwKvYoUgA4GN4Pp05DduUGkehRdmEGNbQi/kXc7AWMnPVY5aOpF+ioVhrYiFOyy1JNz6QMeyprWivsMyFkr1oi5Dyc/l3Yo7Bv1LvCnJkylqfu6j1YlYIjE0TIDWTc+NTTsFZTgTOMy2Eo0xsGvoYdPSECTqdjr+a0h3rdKh3UjZCg0dq98nUpBaD2RgOyWYvv7tjcT/vGZiuoftlIdxYjBkk0XdRFAT0VFItMMVMiMGlgBT3N5KWR8UMGOjzNoQvN8v/yWX1Yq3V6me7+ePT6ZxZMg22SFF4pEDckzOSI3UCSP35JE8kxfnwXlyXp23SeuMM53ZIj/gvH8B3nGd0g==</latexit>

= max
a

X

e0

P (e|e0)
X

s

P (s|e, e0)U(s, a)
<latexit sha1_base64="eDqwJnVpTz3mTAXpTEhXmvG7lic=">AAACF3icbVBNSwMxEM36WetX1aOXYBErSNmtgl4E0YvHCrYW2rLMptM2mOwuSVYsa/+FF/+KFw+KeNWb/8b046CtDwJv3pthMi+IBdfGdb+dmdm5+YXFzFJ2eWV1bT23sVnVUaIYVlgkIlULQKPgIVYMNwJrsUKQgcCb4PZi4N/codI8Cq9NL8amhE7I25yBsZKfK542JNz7QBs6kX6Ke/1yAR9wb39Ya1ou6Ac8sHWloA9g38/l3aI7BJ0m3pjkyRhlP/fVaEUskRgaJkDruufGppmCMpwJ7GcbicYY2C10sG5pCBJ1Mx3e1ae7VmnRdqTsCw0dqr8nUpBa92RgOyWYrp70BuJ/Xj0x7ZNmysM4MRiy0aJ2IqiJ6CAk2uIKmRE9S4Apbv9KWRcUMGOjzNoQvMmTp0m1VPQOi6Wro/zZ+TiODNkmO6RAPHJMzsglKZMKYeSRPJNX8uY8OS/Ou/Mxap1xxjNb5A+czx/ftp3S</latexit>

= max
a

X

e0

X

s

P (s, e0|e)U(s, a)
<latexit sha1_base64="WWjXHj1qgFq7XCzRsTi8xjuTZm8=">AAACEHicbZA9SwNBEIb34leMX6eWNotBYkDCXRS0EYI2lhGMCkk45jYTXbJ7d+zuieHMT7Dxr9hYKGJraee/cRNTqPGFhYd3ZpidN0wE18bzPp3c1PTM7Fx+vrCwuLS84q6unes4VQwbLBaxugxBo+ARNgw3Ai8ThSBDgRdh73hYv7hBpXkcnZl+gm0JVxHvcgbGWoFbOmxJuA2AtnQqgwxLgxFoWt/WO1i6w3LDApQDt+hVvJHoJPhjKJKx6oH70erELJUYGSZA66bvJaadgTKcCRwUWqnGBFgPrrBpMQKJup2NDhrQLet0aDdW9kWGjtyfExlIrfsytJ0SzLX+Wxua/9WaqeketDMeJanBiH0v6qaCmpgO06EdrpAZ0bcATHH7V8quQQEzNsOCDcH/e/IknFcr/m6lerpXrB2N48iTDbJJtolP9kmNnJA6aRBG7skjeSYvzoPz5Lw6b9+tOWc8s05+yXn/Aluim34=</latexit>

VPI Properties

• Nonnegative

• Nonadditive
(think of observing Ej twice)

• Order-independent

330

Quick VPI Questions

• The soup of the day is either clam chowder or split
pea, but you wouldn’t order either one. What’s
the value of knowing which it is?

• There are two kinds of plastic forks at a picnic.
One kind is slightly sturdier. What’s the value of
knowing which?

• You’re playing the lottery. The prize will be $0 or
$100. You can play any number between 1 and
100 (chance of winning is 1%). What is the value
of knowing the winning number?

331

Value of Imperfect Information?

• No such thing

• Information corresponds to the observation
of a node in the decision network

• If data is “noisy” that just means we don’t
observe the original variable, but another
variable which is a noisy version of the
original one

332

VPI Question

• VPI(OilLoc) ?

• VPI(ScoutingReport) ?

• VPI(Scout) ?

• VPI(Scout | ScoutingReport) ?

• Generally:
If Parents(U) Z | CurrentEvidence
Then VPI(Z | CurrentEvidence) = 0

333

OilLoc

DrillLoc

U

Scouting
Report

Scout

